×

Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions. (English) Zbl 1482.53117

In [Invent. Math. 217, 35–76 (2019; Zbl 1414.53059)], the authors of the paper under review prove that the rotationally symmetric bowl soliton is the only noncompact ancient solution of mean curvature flow in \(\mathbb{R}^3\) which is strictly convex and non-collapsed. In the paper under review, using similar techniques, the authors classify all noncompact ancient solutions to mean curvature flow in \(\mathbb{R}^{n+1}\), \(n\geq 3\), which are convex, uniformly two-convex, and non-collapsed, proving that such an ancient solution is a rotationally symmetric translating soliton. As a direct consequence, the following interesting result is derived: Let us consider an arbitrary closed, embedded, two-convex hypersurface in \(\mathbb{R}^{n+1}\), and evolve it by mean curvature flow. Then it follows that, at the first singular time, the only possible blow-up limits are shrinking round spheres, shrinking round cylinders, and the unique rotationally symmetric translating soliton.

MSC:

53E10 Flows related to mean curvature
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces

Citations:

Zbl 1414.53059

References:

[1] 10.4310/jdg/1552442605 · Zbl 1416.53061 · doi:10.4310/jdg/1552442605
[2] 10.1007/s00222-019-00859-4 · Zbl 1414.53059 · doi:10.1007/s00222-019-00859-4
[3] 10.4007/annals.2012.175.2.7 · Zbl 1239.53084 · doi:10.4007/annals.2012.175.2.7
[4] 10.1007/978-0-8176-8210-1 · doi:10.1007/978-0-8176-8210-1
[5] 10.1007/BF01232278 · Zbl 0707.53008 · doi:10.1007/BF01232278
[6] 10.4310/jdg/1214456010 · Zbl 0827.53006 · doi:10.4310/jdg/1214456010
[7] 10.1002/cpa.21650 · Zbl 1360.53069 · doi:10.1002/cpa.21650
[8] 10.1215/00127094-0000008X · Zbl 1370.53046 · doi:10.1215/00127094-0000008X
[9] 10.4310/jdg/1214444099 · Zbl 0694.53005 · doi:10.4310/jdg/1214444099
[10] 10.1007/s00222-008-0148-4 · Zbl 1170.53042 · doi:10.1007/s00222-008-0148-4
[11] 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C · Zbl 0899.35044 · doi:10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
[12] 10.4310/MAA.2009.v16.n2.a1 · Zbl 1184.53071 · doi:10.4310/MAA.2009.v16.n2.a1
[13] 10.2307/2371445 · JFM 66.0905.01 · doi:10.2307/2371445
[14] 10.1090/S0894-0347-00-00338-6 · Zbl 0961.53039 · doi:10.1090/S0894-0347-00-00338-6
[15] 10.1090/S0894-0347-02-00406-X · Zbl 1027.53078 · doi:10.1090/S0894-0347-02-00406-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.