×

Canonical almost complex structures on ACH Einstein manifolds. (English) Zbl 1482.53040

In this article, the author considers the problem of introducing an almost complex structure to a given arbitrary asymptotically complex hyperbolic (ACH) Einstein space that extends the CR structure on the boundary in an appropriate sense and in a canonical manner. The almost complex structures \(J\) that are compatible with a given ACH metric \(g\) are considered, and are extensions of the conformal infinity of \(g\). The author introduces a functional which is defined on the space of those \(J\) for which \((g,J)\) is an ACH almost Hermitian structure. It is obvious that \(J\) is a critical point of the functional if \((g, J)\) is Kähler, or more generally, if \((g,J)\) is semi-Kähler, as called by P. Gauduchon [Math. Ann. 267, 495–518 (1984; Zbl 0523.53059)]. The choice of the functional makes the linearization \(P_S\) of the mapping \(J \to S\) a Laplace-type differential operator. So, if what is given in the beginning is not only a metric but an ACH and an almost Hermitian structure that is Kähler-Einstein (or an ACH Kähler-Einstein structure for short), then under some assumption, one can construct a family of deformed ACH almost Hermitian structures. This assumption is satisfied when \(g\) has negative sectional curvature, for instance. For future applications, knowing the asymptotic expansion of \((g,J)\) is also important. This is also achieved.

MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
32T15 Strongly pseudoconvex domains
32V15 CR manifolds as boundaries of domains
53B35 Local differential geometry of Hermitian and Kählerian structures
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

Citations:

Zbl 0523.53059

References:

[1] 10.4310/SDG.2001.v6.n1.a9 · doi:10.4310/SDG.2001.v6.n1.a9
[2] ; Biquard, Métriques d’Einstein asymptotiquement symétriques. Astérisque, 265 (2000) · Zbl 0967.53030
[3] ; Biquard, Asymptotically symmetric Einstein metrics. SMF/AMS Texts and Monographs, 13 (2006) · Zbl 1112.53001
[4] 10.1215/S0012-7094-04-12612-0 · Zbl 1074.53037 · doi:10.1215/S0012-7094-04-12612-0
[5] ; Biquard, Arch. Math. (Brno), 42, 85 (2006) · Zbl 1164.53352
[6] 10.1007/BF02392751 · Zbl 0704.32005 · doi:10.1007/BF02392751
[7] 10.14492/hokmj/1350912986 · Zbl 0996.53023 · doi:10.14492/hokmj/1350912986
[8] 10.1090/surv/154 · doi:10.1090/surv/154
[9] 10.1002/cpa.3160330404 · Zbl 0506.53031 · doi:10.1002/cpa.3160330404
[10] 10.1007/BF01406845 · Zbl 0289.32012 · doi:10.1007/BF01406845
[11] 10.2307/1970945 · Zbl 0322.32012 · doi:10.2307/1970945
[12] 10.1007/BF01455968 · Zbl 0523.53059 · doi:10.1007/BF01455968
[13] ; Gauduchon, Boll. Un. Mat. Ital. B (7), 11, 257 (1997) · Zbl 0876.53015
[14] 10.1016/0001-8708(91)90071-E · Zbl 0765.53034 · doi:10.1016/0001-8708(91)90071-E
[15] 10.1090/conm/332/05935 · doi:10.1090/conm/332/05935
[16] 10.1007/b138372 · doi:10.1007/b138372
[17] 10.1090/memo/0864 · Zbl 1112.53002 · doi:10.1090/memo/0864
[18] 10.1007/BF02392727 · Zbl 0496.35042 · doi:10.1007/BF02392727
[19] 10.1353/ajm.2016.0034 · Zbl 1352.53063 · doi:10.1353/ajm.2016.0034
[20] 10.1007/s12220-013-9411-z · Zbl 1301.32025 · doi:10.1007/s12220-013-9411-z
[21] 10.1016/j.difgeo.2016.01.002 · Zbl 1350.32033 · doi:10.1016/j.difgeo.2016.01.002
[22] 10.1090/tran/8102 · Zbl 1443.53030 · doi:10.1090/tran/8102
[23] 10.4171/JEMS/262 · Zbl 1214.53055 · doi:10.4171/JEMS/262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.