×

Eulerianity of Fourier coefficients of automorphic forms. (English) Zbl 1482.11071

Constructing autormorphic \(L\)-functions is a major theme in the Langlands program. One systematic fruitful way to construct automorphic \(L\)-functions that has largely shaped the Langlands program in its current form is initiated by R. P. Langlands in his pioneering work on Eisenstein series [Euler products. Yale Mathematical Monographs. 1. New Haven-London: Yale University Press. (1971; Zbl 0231.20016)] and its constant terms, and later extended by F. Shahidi in his work on Whittaker Fourier coefficients [Am. J. Math. 103, 297–355 (1981; Zbl 0467.12013)], i.e., the profound Langlands-Shahidi theory.
With the goal of constructing \(L\)-functions via investigating other Fourier coefficients, in the paper under review, the authors study the Eulerianity property of certain Fourier coefficients of minimal and next-to-minimal automorphic representations. Some structural results are observed, and some special examples are analyzed. However, all of those seems a little bit “trivial” and may not have “non-trivial” applications in the goal mentioned here, though most of the authors were working on string theory and applications may be seen there.

MSC:

11F30 Fourier coefficients of automorphic forms
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
20G45 Applications of linear algebraic groups to the sciences

References:

[1] O. Ahl\'en, H. P. A. Gustafsson, A. Kleinschmidt, B. Liu, and D. Persson, Fourier coefficients attached to small automorphic representations of \(\textSL_n(A)\), J. Number Theory 192 (2018) 80-142, 1707.08937. · Zbl 1443.11079
[2] Bossard, Guillaume; Kleinschmidt, Axel, Supergravity divergences, supersymmetry and automorphic forms, J. High Energy Phys., 8, 102, front matter + 45 pp. (2015) · Zbl 1388.83755 · doi:10.1007/JHEP08(2015)102
[3] Bourbaki, N., \'{E}l\'{e}ments de math\'{e}matique. Fasc. XXXVIII: Groupes et alg\`ebres de Lie. Chapitre VII: Sous-alg\`ebres de Cartan, \'{e}l\'{e}ments r\'{e}guliers. Chapitre VIII: Alg\`ebres de Lie semi-simples d\'{e}ploy\'{e}es, 271 pp. (1975), Actualit\'{e}s Scientifiques et Industrielles, No. 1364. Hermann, Paris · Zbl 0329.17002
[4] Bump, Daniel, Automorphic forms on \({\text{GL}}(3,{\mathbf{R}})\), Lecture Notes in Mathematics 1083, xi+184 pp. (1984), Springer-Verlag, Berlin · Zbl 0543.22005 · doi:10.1007/BFb0100147
[5] Collingwood, David H.; McGovern, William M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, xiv+186 pp. (1993), Van Nostrand Reinhold Co., New York · Zbl 0972.17008
[6] Casselman, W.; Shalika, J., The unramified principal series of \(p\)-adic groups. II. The Whittaker function, Compositio Math., 41, 2, 207-231 (1980) · Zbl 0472.22005
[7] \DJ okovi\'{c}, Dragomir \v{Z}., Note on rational points in nilpotent orbits of semisimple groups, Indag. Math. (N.S.), 9, 1, 31-34 (1998) · Zbl 0918.22008 · doi:10.1016/S0019-3577(97)87565-9
[8] Dvorsky, Alexander; Sahi, Siddhartha, Explicit Hilbert spaces for certain unipotent representations. II, Invent. Math., 138, 1, 203-224 (1999) · Zbl 0937.22006 · doi:10.1007/s002220050347
[9] Fleig, Philipp; Gustafsson, Henrik P. A.; Kleinschmidt, Axel; Persson, Daniel, Eisenstein series and automorphic representations, Cambridge Studies in Advanced Mathematics 176, xviii+567 pp. (2018), Cambridge University Press, Cambridge · Zbl 1435.11001 · doi:10.1017/9781316995860
[10] Fleig, Philipp; Kleinschmidt, Axel; Persson, Daniel, Fourier expansions of Kac-Moody Eisenstein series and degenerate Whittaker vectors, Commun. Number Theory Phys., 8, 1, 41-100 (2014) · Zbl 1304.81134 · doi:10.4310/CNTP.2014.v8.n1.a2
[11] D. Gourevitch, H. P. A. Gustafsson, A. Kleinschmidt, D. Persson, and S. Sahi, A reduction principle for Fourier coefficients of automorphic forms, 1811.05966v5. · Zbl 1482.11071
[12] D. Gourevitch, H. P. A. Gustafsson, A. Kleinschmidt, D. Persson, and S. Sahi, Fourier coefficients of minimal and next-to-minimal automorphic representations of simply-laced groups, Can. J. Math. online (2020) 1-48, 1908.08296.
[13] Gan, Wee Teck; Gross, Benedict H.; Prasad, Dipendra, Symplectic local root numbers, central critical \(L\) values, and restriction problems in the representation theory of classical groups, Ast\'{e}risque, 346, 1-109 (2012) · Zbl 1280.22019
[14] R. Gomez, D. Gourevitch, and S. Sahi, Whittaker supports for representations of reductive groups, Annales de l’Institut Fourier, 1610.00284. To appear. · Zbl 1539.20024
[15] Gomez, Raul; Gourevitch, Dmitry; Sahi, Siddhartha, Generalized and degenerate Whittaker models, Compos. Math., 153, 2, 223-256 (2017) · Zbl 1384.20039 · doi:10.1112/S0010437X16007788
[16] Ginzburg, David; Hundley, Joseph, Constructions of global integrals in the exceptional group \(F_4\), Kyushu J. Math., 67, 2, 389-417 (2013) · Zbl 1278.32014 · doi:10.2206/kyushujm.67.389
[17] Ginzburg, David, Certain conjectures relating unipotent orbits to automorphic representations, Israel J. Math., 151, 323-355 (2006) · Zbl 1128.11028 · doi:10.1007/BF02777366
[18] Ginzburg, David, Eulerian integrals for \({\text{GL}}_n\). Multiple Dirichlet series, automorphic forms, and analytic number theory, Proc. Sympos. Pure Math. 75, 203-223 (2006), Amer. Math. Soc., Providence, RI · Zbl 1129.11023 · doi:10.1090/pspum/075/2279938
[19] Ginzburg, David, Towards a classification of global integral constructions and functorial liftings using the small representations method, Adv. Math., 254, 157-186 (2014) · Zbl 1286.11082 · doi:10.1016/j.aim.2013.12.007
[20] Gel\cprime fand, I. M.; Kajdan, D. A., Representations of the group \({\text{GL}}(n,K)\) where \(K\) is a local field. Lie groups and their representations, Proc. Summer School, Bolyai J\'{a}nos Math. Soc., Budapest, 1971, 95-118 (1975), Halsted, New York · Zbl 0348.22011
[21] Gustafsson, Henrik P. A.; Kleinschmidt, Axel; Persson, Daniel, Small automorphic representations and degenerate Whittaker vectors, J. Number Theory, 166, 344-399 (2016) · Zbl 1402.11078 · doi:10.1016/j.jnt.2016.02.002
[22] M. B. Green, S. D. Miller, and P. Vanhove, Small representations, string instantons, and Fourier modes of Eisenstein series, J. Number Theor. 146 (2015) 187-309, 1111.2983. · Zbl 1366.11098
[23] Ginzburg, David; Rallis, Stephen; Soudry, David, On the automorphic theta representation for simply laced groups, Israel J. Math., 100, 61-116 (1997) · Zbl 0881.11050 · doi:10.1007/BF02773635
[24] Ginzburg, D.; Rallis, S.; Soudry, D., On Fourier coefficients of automorphic forms of symplectic groups, Manuscripta Math., 111, 1, 1-16 (2003) · Zbl 1027.11034 · doi:10.1007/s00229-003-0355-7
[25] Ginzburg, David; Rallis, Stephen; Soudry, David, The descent map from automorphic representations of \({\text{GL}}(n)\) to classical groups, x+339 pp. (2011), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1233.11056 · doi:10.1142/9789814304993
[26] Gan, Wee Teck; Savin, Gordan, On minimal representations definitions and properties, Represent. Theory, 9, 46-93 (2005) · Zbl 1092.22012 · doi:10.1090/S1088-4165-05-00191-3
[27] Hilgert, Joachim; Kobayashi, Toshiyuki; M\"{o}llers, Jan, Minimal representations via Bessel operators, J. Math. Soc. Japan, 66, 2, 349-414 (2014) · Zbl 1294.22011 · doi:10.2969/jmsj/06620349
[28] Hundley, Joseph; Sayag, Eitan, Descent construction for GSpin groups, Mem. Amer. Math. Soc., 243, 1148, v+124 pp. (2016) · Zbl 1407.11068 · doi:10.1090/memo/1148
[29] Ikeda, Tamotsu, On the theory of Jacobi forms and Fourier-Jacobi coefficients of Eisenstein series, J. Math. Kyoto Univ., 34, 3, 615-636 (1994) · Zbl 0822.11041 · doi:10.1215/kjm/1250518935
[30] Jiang, Dihua; Liu, Baiying, On Fourier coefficients of automorphic forms of \({\text{GL}}(n)\), Int. Math. Res. Not. IMRN, 17, 4029-4071 (2013) · Zbl 1359.11039 · doi:10.1093/imrn/rns153
[31] Jiang, Dihua; Liu, Baiying; Savin, Gordan, Raising nilpotent orbits in wave-front sets, Represent. Theory, 20, 419-450 (2016) · Zbl 1417.11087 · doi:10.1090/ert/490
[32] Jiang, Dihua; Rallis, Stephen, Fourier coefficients of Eisenstein series of the exceptional group of type \(G_2\), Pacific J. Math., 181, 2, 281-314 (1997) · Zbl 0893.11018 · doi:10.2140/pjm.1997.181.281
[33] Jiang, Dihua; Sun, Binyong; Zhu, Chen-Bo, Uniqueness of Bessel models: the Archimedean case, Geom. Funct. Anal., 20, 3, 690-709 (2010) · Zbl 1200.22008 · doi:10.1007/s00039-010-0077-4
[34] Kostant, Bertram, On Whittaker vectors and representation theory, Invent. Math., 48, 2, 101-184 (1978) · Zbl 0405.22013 · doi:10.1007/BF01390249
[35] Kazhdan, D.; Polishchuk, A., Minimal representations: spherical vectors and automorphic functionals. Algebraic groups and arithmetic, 127-198 (2004), Tata Inst. Fund. Res., Mumbai · Zbl 1079.22014
[36] D. Kazhdan, B. Pioline, and A. Waldron, Minimal representations, spherical vectors, and exceptional theta series, Commun. Math. Phys. 226 (2002) 1-40, hep-th/0107222. · Zbl 1143.11316
[37] Kazhdan, D.; Savin, G., The smallest representation of simply laced groups. Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Ramat Aviv, 1989, Israel Math. Conf. Proc. 2, 209-223 (1990), Weizmann, Jerusalem · Zbl 0737.22008
[38] Kobayashi, Toshiyuki; Savin, Gordan, Global uniqueness of small representations, Math. Z., 281, 1-2, 215-239 (2015) · Zbl 1376.11042 · doi:10.1007/s00209-015-1481-0
[39] Langlands, Robert P., Euler products, Yale Mathematical Monographs, 1, v+53 pp. (1971), Yale University Press, New Haven, Conn.-London · Zbl 0231.20016
[40] Loke, Hung Yean; Savin, Gordan, Rank and matrix coefficients for simply laced groups, J. Reine Angew. Math., 599, 201-216 (2006) · Zbl 1125.22009 · doi:10.1515/CRELLE.2006.082
[41] Miller, Stephen D.; Sahi, Siddhartha, Fourier coefficients of automorphic forms, character variety orbits, and small representations, J. Number Theory, 132, 12, 3070-3108 (2012) · Zbl 1272.11062 · doi:10.1016/j.jnt.2012.05.032
[42] M\"{o}llers, Jan; Schwarz, Benjamin, Bessel operators on Jordan pairs and small representations of semisimple Lie groups, J. Funct. Anal., 272, 5, 1892-1955 (2017) · Zbl 1368.22007 · doi:10.1016/j.jfa.2016.10.026
[43] M\oe glin, C.; Waldspurger, J.-L., Mod\`eles de Whittaker d\'{e}g\'{e}n\'{e}r\'{e}s pour des groupes \(p\)-adiques, Math. Z., 196, 3, 427-452 (1987) · Zbl 0612.22008 · doi:10.1007/BF01200363
[44] M\oe glin, C.; Waldspurger, J.-L., Le spectre r\'{e}siduel de \({\text{GL}}(n)\), Ann. Sci. \'{E}cole Norm. Sup. (4), 22, 4, 605-674 (1989) · Zbl 0696.10023
[45] M\oe glin, C.; Waldspurger, J.-L., Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics 113, xxviii+338 pp. (1995), Cambridge University Press, Cambridge · Zbl 0846.11032 · doi:10.1017/CBO9780511470905
[46] Offen, Omer; Sayag, Eitan, Global mixed periods and local Klyachko models for the general linear group, Int. Math. Res. Not. IMRN, 1, Art. ID rnm 136, 25 pp. (2008) · Zbl 1158.22021 · doi:10.1093/imrn/rnm136
[47] Pollack, Aaron, The Fourier expansion of modular forms on quaternionic exceptional groups, Duke Math. J., 169, 7, 1209-1280 (2020) · Zbl 1481.11043 · doi:10.1215/00127094-2019-0063
[48] Pioline, Boris; Persson, Daniel, The automorphic NS5-brane, Commun. Number Theory Phys., 3, 4, 697-754 (2009) · Zbl 1196.81202 · doi:10.4310/CNTP.2009.v3.n4.a5
[49] Rodier, Fran\c{c}ois, Whittaker models for admissible representations of reductive \(p\)-adic split groups. Harmonic analysis on homogeneous spaces, Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972, 425-430 (1973), Amer. Math. Soc., Providence, R.I. · Zbl 0287.22016
[50] Serre, J.-P., A course in arithmetic, viii+115 pp. (1973), Springer-Verlag, New York-Heidelberg · Zbl 0256.12001
[51] Shalika, J. A., The multiplicity one theorem for \({\text{GL}}_n \), Ann. of Math. (2), 100, 171-193 (1974) · Zbl 0316.12010 · doi:10.2307/1971071
[52] Shahidi, Freydoon, Functional equation satisfied by certain \(L\)-functions, Compositio Math., 37, 2, 171-207 (1978) · Zbl 0393.12017
[53] Shahidi, Freydoon, On certain \(L\)-functions, Amer. J. Math., 103, 2, 297-355 (1981) · Zbl 0467.12013 · doi:10.2307/2374219
[54] Spaltenstein, Nicolas, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics 946, ix+259 pp. (1982), Springer-Verlag, Berlin-New York · Zbl 0486.20025
[55] Speh, Birgit, Unitary representations of \({\text{Gl}}(n,\,{\mathbf{R}})\) with nontrivial \(({\mathfrak{g}},\,K)\)-cohomology, Invent. Math., 71, 3, 443-465 (1983) · Zbl 0505.22015 · doi:10.1007/BF02095987
[56] Savin, Gordan; Woodbury, Michael, Structure of internal modules and a formula for the spherical vector of minimal representations, J. Algebra, 312, 2, 755-772 (2007) · Zbl 1170.22008 · doi:10.1016/j.jalgebra.2007.01.014
[57] Vogan, David A., Jr., Singular unitary representations. Noncommutative harmonic analysis and Lie groups, Marseille, 1980, Lecture Notes in Math. 880, 506-535 (1981), Springer, Berlin-New York · Zbl 0464.22007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.