×

An old and new approach to Goormaghtigh’s equation. (English) Zbl 1482.11047

The following equation in integers (Goormaghtigh’s equation) is considered: \[ \frac{x^m-1}{x-1}=\frac{y^n-1}{y-1},\; y>x>1,\; m>n>2, \quad \gcd(m-1,n-1)=d>1.\tag{1} \] The first main result of the paper is the following:
Theorem 1. If there is a solution in integers \(x, y, n, m\), to equation (1), then \(x<(3d)^{4n/d}\leq 36^n\). In particular, if \(n\) is fixed, there is an effectively computable constant \(c=c(n)\) such that \(\max\{x,y,m\}<c\).
The authors refine their approach and combine with some new results from computational Diophantine approximation, in order to achieve the complete solution of equation (1) for small fixed values of \(n\).
Theorem 2. The only solutions to (1) with \(n\in\{3,4,5\}\) are \((x,y,m,n)=(2,5,5,3)\) and \((2,90,13,3)\).
From the paper: “Essentially half of the current paper is concerned with developing Diophantine approximation machinery for the case \(n=5\) in Theorem 2. Here, ‘off-the-shelf’ techniques for finding integral points on models of elliptic curves or for solving Ramanujan-Nagell equations of the shape \(F(x)= z^n\) (where \(F\) is a polynomial and \(z\) a fixed integer) do not apparently permit the full resolution of this problem in a reasonable amount of time. The new ideas introduced here are explored more fully in the general setting of Thue-Mahler equations in the forthcoming paper [not yet available][…]
In Section 2, we derive ‘good’ rational approximations to certain algebraic numbers associated to solutions of (1).
Section 3 contains relevant details about Padé approximation to the binomial function. In Sections 4 and 5, we find the proofs of Theorems 1 and 2, respectively. In the latter case, to treat small fixed values of \(n\) and \(x\) in equation (1), we appeal to a variety of techniques from computational Diophantine approximation.
Most interestingly, in case \(n = 5\), we sharpen existing techniques for solving Thue-Mahler equations, and specialize them to our problem.
We note that this section may essentially be read independently of the rest of the paper. For each \(x\), we restrict the problem to that of solving a number of related \(S\)-unit equations, where \(S\) is the set of primes dividing \(x\).
We then generate a large upper bound on the exponents of these equations using bounds for linear forms in logarithms, both Archimedean and non-Archimedean. Finally, unlike traditional examples of Thue-Mahler equations, where extensive use of geometric and \(p\)-adic reduction techniques are typically required, using only a few iterations of the \(LLL\) algorithm, we reduce this bound significantly, after which we apply a naive search to complete our computation. We will, in fact, employ two quite different algorithms for solving Thue-Mahler equations, one for which we must compute the class group of a number field and one which avoids this computation altogether. For a given value of \(x\), one of these versions may be significantly faster than the other; we list some timings for examples to illustrate this difference.”
Section 6 which is technical and long (almost 18 pages), treats the case \(n=5\) when \(x\) is “small”, by reducing the resolution of equation (1) to that of a large number of Thue-Mahler equations. The authors have many computational challenges to overcome not by mere “brute force” of course. For the resolution of the resulting Thue-Mahler equations they need to improve on earlier techniques (for example those due to Tzanakis and de Weger) by using ideas of a forthcoming paper by Gherga, von Känel, Matschke and Siksek.
Section 7 is devoted to the following auxiliary proposition:
If \(\displaystyle{ C(k,d):=d^k\prod_{p|d}p^{\mathrm{ord}_p(k!)}}\), then \(2^k\leq C(k,2)<4^k\) and \(d^k\leq C(k,d)<(2d\log d)^k\) for \(d>2\).
Finally, Section 8 contains a few concluding remarks.

MSC:

11D41 Higher degree equations; Fermat’s equation
11D61 Exponential Diophantine equations
11J68 Approximation to algebraic numbers
11Y50 Computer solution of Diophantine equations

Software:

Magma
Full Text: DOI

References:

[1] Balasubramanian, R.; Shorey, T. N., On the equation \(a(x^m-1)/(x-1)=b(y^n-1) /(y-1)\), Math. Scand., 46, 2, 177-182 (1980) · Zbl 0425.10020 · doi:10.7146/math.scand.a-11861
[2] Baker, A., Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc., 65, 439-444 (1969) · Zbl 0174.33803 · doi:10.1017/s0305004100044418
[3] Bauer, Mark; Bennett, Michael A., Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation, Ramanujan J., 6, 2, 209-270 (2002) · Zbl 1010.11020 · doi:10.1023/A:1015779301077
[4] Beukers, F., On the generalized Ramanujan-Nagell equation. I, Acta Arith., 38, 4, 389-410 (1980/81) · Zbl 0371.10014 · doi:10.4064/aa-38-4-389-410
[5] Beukers, F., On the generalized Ramanujan-Nagell equation. II, Acta Arith., 39, 2, 113-123 (1981) · Zbl 0377.10012 · doi:10.4064/aa-39-2-113-123
[6] Bosma, Wieb; Cannon, John; Playoust, Catherine, The Magma algebra system. I. The user language, J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[7] Bugeaud, Yann; Gy\H{o}ry, K\'{a}lm\'{a}n, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith., 74, 3, 273-292 (1996) · Zbl 0861.11024 · doi:10.4064/aa-74-3-273-292
[8] Bugeaud, Yann; Shorey, T. N., On the Diophantine equation \(\frac{x^m-1}{x-1}=\frac{y^n-1}{y-1} \), Pacific J. Math., 207, 1, 61-75 (2002) · Zbl 1047.11028 · doi:10.2140/pjm.2002.207.61
[9] Chudnovsky, G. V., On the method of Thue-Siegel, Ann. of Math. (2), 117, 2, 325-382 (1983) · Zbl 0518.10038 · doi:10.2307/2007080
[10] Davenport, H.; Lewis, D. J.; Schinzel, A., Equations of the form \(f(x)=g(y)\), Quart. J. Math. Oxford Ser. (2), 12, 304-312 (1961) · Zbl 0121.28403 · doi:10.1093/qmath/12.1.304
[11] GhKaMaSi A. Gherga, R. von K\"anel, B. Matschke and S. Siksek, Efficient resolution of Thue-Mahler equations, Manuscript in preparation (2018).
[12] Go R. Goormaghtigh, L’Interm\'ediaire des Math\'ematiciens, 24 (1917), 88.
[13] He, Bo, A remark on the Diophantine equation \((x^3-1)/(x-1)=(y^n-1)/(y-1)\), Glas. Mat. Ser. III, 44(64), 1, 1-6 (2009) · Zbl 1222.11047 · doi:10.3336/gm.44.1.01
[14] He, Bo; Togb\'{e}, Alain, On the number of solutions of Goormaghtigh equation for given \(x\) and \(y\), Indag. Math. (N.S.), 19, 1, 65-72 (2008) · Zbl 1246.11085 · doi:10.1016/S0019-3577(08)80015-8
[15] Karanicoloff, Chr., Sur une \'{e}quation diophantienne consid\'{e}r\'{e}e par Goormaghtigh, Ann. Polon. Math., 14, 69-76 (1963) · Zbl 0127.27104 · doi:10.4064/ap-14-1-69-76
[16] Le, Maohua, On the Diophantine equation \((x^3-1)/(x-1)=(y^n-1)/(y-1)\), Trans. Amer. Math. Soc., 351, 3, 1063-1074 (1999) · Zbl 0927.11014 · doi:10.1090/S0002-9947-99-02013-9
[17] Le, Maohua, Exceptional solutions of the exponential Diophantine equation \((x^3-1)/(x-1)=(y^n-1)/(y-1)\), J. Reine Angew. Math., 543, 187-192 (2002) · Zbl 1033.11013 · doi:10.1515/crll.2002.014
[18] Le, Mao Hua, On Goormaghtigh’s equation \({x^3-1\over x-1}={y^n-1\over y-1} \), Acta Math. Sinica (Chin. Ser.), 45, 3, 505-508 (2002) · Zbl 1013.11014
[19] Ljunggren, Wilhelm, Some theorems on indeterminate equations of the form \(x^n-1/x-1=y^q\), Norsk Mat. Tidsskr., 25, 17-20 (1943) · Zbl 0028.00901
[20] Mih\u{a}ilescu, Preda, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math., 572, 167-195 (2004) · Zbl 1067.11017 · doi:10.1515/crll.2004.048
[21] Nag T. Nagell, Note sur l’\'equation ind\'etermin\'ee \((x^n-1)/(x-1)=y^q\), Norsk. Mat. Tidsskr. 2 (1920), 75-78. · JFM 47.0121.03
[22] Nesterenko, Yu. V.; Shorey, T. N., On an equation of Goormaghtigh, Acta Arith., 83, 4, 381-389 (1998) · Zbl 0896.11010 · doi:10.4064/aa-83-4-381-389
[23] Ra R. Ratat, L’Interm\'ediaire des Math\'ematiciens, 23 (1916), 150.
[24] Robin, Guy, Estimation de la fonction de Tchebychef \(\theta\) sur le \(k\)-i\`eme nombre premier et grandes valeurs de la fonction \(\omega(n)\) nombre de diviseurs premiers de \(n\), Acta Arith., 42, 4, 367-389 (1983) · Zbl 0475.10034 · doi:10.4064/aa-42-4-367-389
[25] Shorey, T. N., An equation of Goormaghtigh and Diophantine approximations. Currents trends in number theory, Allahabad, 2000, 185-197 (2002), Hindustan Book Agency, New Delhi · Zbl 1088.11023
[26] Shorey, T. N.; Tijdeman, R., New applications of Diophantine approximations to Diophantine equations, Math. Scand., 39, 1, 5-18 (1976) · Zbl 0341.10017 · doi:10.7146/math.scand.a-11641
[27] Tijdeman, R., On the equation of Catalan, Acta Arith., 29, 2, 197-209 (1976) · Zbl 0286.10013 · doi:10.4064/aa-29-2-197-209
[28] Tzanakis, N.; de Weger, B. M. M., How to explicitly solve a Thue-Mahler equation, Compositio Math., 84, 3, 223-288 (1992) · Zbl 0773.11023
[29] de Weger, B. M. M., Algorithms for Diophantine equations, CWI Tract 65, viii+212 pp. (1989), Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam · Zbl 0687.10013
[30] Yuan, Pingzhi, On the Diophantine equation \(ax^2+by^2=ck^n\), Indag. Math. (N.S.), 16, 2, 301-320 (2005) · Zbl 1088.11024 · doi:10.1016/S0019-3577(05)80030-8
[31] Yuan, Pingzhi, On the Diophantine equation \(\frac{x^3-1}{x-1}=\frac{y^n-1}{y-1} \), J. Number Theory, 112, 1, 20-25 (2005) · Zbl 1063.11009 · doi:10.1016/j.jnt.2004.12.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.