×

Robust stability analysis of uncertain fractional order neutral-type delay nonlinear systems with actuator saturation. (English) Zbl 1481.93105

Summary: In this paper, we study the robust stability of uncertain fractional order (FO) nonlinear systems having neutral-type delay and input saturation. From the Lyapunov-Krasovskii functional, sufficient criteria on asymptotic robust stability of such FO systems with the help of linear matrix inequalities are specified to compute the gain of state-feedback controller. An optimization is also derived using the cone complementarity linearization method for finding the controller gains subject to maximizing the domain of attraction. The main results are confirmed via numerical examples.

MSC:

93D15 Stabilization of systems by feedback
93D09 Robust stability
34K37 Functional-differential equations with fractional derivatives
34K40 Neutral functional-differential equations
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Samko, S. K.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives: Theory and applications (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Yverdon, Switzerland Yverdon · Zbl 0818.26003
[2] Kilbas, A. A.A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, 204 (2006), Elsevier Science Limited · Zbl 1092.45003
[3] Machado, J. T.; Lopes, A. M., Multidimensional scaling locus of memristor and fractional order elements, Journal of Advanced Research (2020)
[4] Machado, J. T.; Lopes, A. M.; de Camposinhos, R., Fractional-order modeling of Epoxy Resin, Philosophical Transactions A (2020) · Zbl 1462.82087
[5] Xiao, B.; Luo, J.; Bi, X.; Li, W.; Chen, B., Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking, Information Sciences, 516, 545-559 (2020) · Zbl 1460.94068
[6] Ding, C.; Cao, J.; Chen, Y., Fractional-order model and experimental verification for broadband hysteresis in piezoelectric actuators, Nonlinear Dynamics, 1-11 (2019)
[7] Leyden, K.; Goodwine, B., Fractional-order system identification for health monitoring, Nonlinear Dynamics, 92, 3, 1317-1334 (2018)
[8] Owolabi, K. M., High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology, Chaos, Solitons & Fractals, 134, 109723 (2020) · Zbl 1483.35117
[9] Zou, C.; Zhang, L.; Hu, X.; Wang, Z.; Wik, T.; Pecht, M., A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors, Journal of Power Sources, 390, 286-296 (2018)
[10] Tusset, A.; Balthazar, J. M.; Bassinello, D.; Pontes, B.; Felix, J. L.P., Statements on chaos control designs, including a fractional order dynamical system, applied to a ǣmemsǥ comb-drive actuator, Nonlinear Dynamics, 69, 4, 1837-1857 (2012) · Zbl 1263.93105
[11] Baleanu, D.; Sajjadi, S. S.; Jajarmi, A.; Asad, J. H., New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, The European Physical Journal Plus, 134, 4, 181 (2019)
[12] Goulart, A.; Lazo, M.; Suarez, J., A new parameterization for the concentration flux using the fractional calculus to model the dispersion of contaminants in the planetary boundary layer, Physica A: Statistical Mechanics and Its Applications, 518, 38-49 (2019) · Zbl 1514.76085
[13] Rajagopal, K.; Vaidyanathan, S.; Karthikeyan, A.; Duraisamy, P., Dynamic analysis and chaos suppression in a fractional order brushless DC motor, Electrical Engineering, 99, 2, 721-733 (2017)
[14] Zhou, P.; Bai, R. J.; Zheng, J. M., Stabilization of a fractional-order chaotic brushless DC motor via a single input, Nonlinear Dynamics, 82, 1-2, 519-525 (2015) · Zbl 1348.34034
[15] Chinnathambi, R.; Rihan, F. A., Stability of fractional-order prey-predator system with time-delay and monod-haldane functional response, Nonlinear Dynamics, 92, 4, 1637-1648 (2018) · Zbl 1398.34015
[16] Pahnehkolaei, S. M.A.; Alfi, A.; Machado, J. T., Stability analysis of fractional quaternion-valued leaky integrator echo state neural networks with multiple time-varying delays, Neurocomputing, 331, 388-402 (2019)
[17] Luo, S.; Li, S.; Tajaddodianfar, F.; Hu, J., Observer-based adaptive stabilization of the fractional-order chaotic mems resonator, Nonlinear Dynamics, 92, 3, 1079-1089 (2018) · Zbl 1398.93301
[18] Xiao, J.; Cao, J.; Cheng, J.; Zhong, S.; Wen, S., Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks, Information Sciences, 556, 221-244 (2020) · Zbl 1458.34102
[19] Ali, M. S.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B., Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued bam neural networks with time varying delays, Communications in Nonlinear Science and Numerical Simulation, 83, 105088 (2020) · Zbl 1454.34102
[20] Liu, Y.; Zhang, D.; Lu, J., Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays, Nonlinear Dynamics, 87, 1, 553-565 (2017) · Zbl 1371.93098
[21] Rakkiyappan, R.; Velmurugan, G.; Cao, J., Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays, Nonlinear Dynamics, 78, 4, 2823-2836 (2014) · Zbl 1331.34154
[22] Pahnehkolaei, S. M.A.; Alfi, A.; Machado, J. T., Uniform stability of fractional order leaky integrator echo state neural network with multiple time delays, Information Sciences, 418, 703-716 (2017)
[23] Zhang, X.; Zhao, Z., Robust stabilization for rectangular descriptor fractional order interval systems with order \(0 < \alpha <1\), Applied Mathematics and Computation, 366, 124766 (2020) · Zbl 1433.34084
[24] Mohammadzadeh, A.; Ghaemi, S., Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy cmac, Nonlinear Dynamics, 88, 4, 2993-3002 (2017)
[25] Badri, P.; Sojoodi, M., Robust stabilisation of fractional-order interval systems via dynamic output feedback: an LMI approach, International Journal of Systems Science, 50, 9, 1718-1730 (2019) · Zbl 1483.93510
[26] Alaviyan Shahri, E. S.; Alfi, A.; Machado, J. T., Lyapunov method for the stability analysis of uncertain fractional-order systems under input saturation, Applied Mathematical Modelling, 81, 663-672 (2020) · Zbl 1481.93103
[27] Lim, Y. H.; Oh, K. K.; Ahn, H. S., Stability and stabilization of fractional-order linear systems subject to input saturation, IEEE Transactions on Automatic Control, 58, 4, 1062-1067 (2012) · Zbl 1369.93495
[28] Shahri, E. S.A.; Alfi, A.; Tenreiro Machado, J., Stability analysis of a class of nonlinear fractional-order systems under control input saturation, International Journal of Robust and Nonlinear Control, 28, 7, 2887-2905 (2018) · Zbl 1391.93177
[29] Song, S.; Park, J. H.; Zhang, B.; Song, X., Adaptive hybrid fuzzy output feedback control for fractional-order nonlinear systems with time-varying delays and input saturation, Applied Mathematics and Computation, 364, 124662 (2020) · Zbl 1433.93059
[30] Meng, F.; Zeng, X.; Wang, Z., Dynamical behavior and synchronization in time-delay fractional-order coupled neurons under electromagnetic radiation, Nonlinear Dynamics, 95, 2, 1615-1625 (2019) · Zbl 1439.92017
[31] Zheng, M.; Li, L.; Peng, H.; Xiao, J.; Yang, Y.; Zhao, H., Finite-time projective synchronization of memristor-based delay fractional-order neural networks, Nonlinear Dynamics, 89, 4, 2641-2655 (2017) · Zbl 1377.93074
[32] Chen, L.; Cao, J.; Wu, R.; Machado, J. T.; Lopes, A. M.; Yang, H., Stability and synchronization of fractional-order memristive neural networks with multiple delays, Neural Networks, 94, 76-85 (2017) · Zbl 1437.93098
[33] Pahnehkolaei, S. M.A.; Alfi, A.; Machado, J. T., Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with quad condition, Applied Mathematics and Computation, 359, 278-293 (2019) · Zbl 1428.34020
[34] Wan, P.; Jian, J.; Mei, J., Periodically intermittent control strategies for \(\alpha \)-exponential stabilization of fractional-order complex-valued delayed neural networks, Nonlinear Dynamics, 92, 2, 247-265 (2018) · Zbl 1398.34024
[35] Lien, C. H.; Yu, K. W.; Lin, Y. F.; Chung, Y. J.; Chung, L. Y., Global exponential stability for uncertain delayed neural networks of neutral type with mixed time delays, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38, 3, 709-720 (2008)
[36] de Oliveira Souza, F., Imaginary characteristic roots of neutral systems with commensurate delays, Systems & Control Letters, 127, 19-24 (2019) · Zbl 1425.93217
[37] Barbarossa, M.; Hadeler, K.; Kuttler, C., State-dependent neutral delay equations from population dynamics, Journal of Mathematical Biology, 69, 4, 1027-1056 (2014) · Zbl 1308.34106
[38] Du, F.; Lu, J. G., Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Applied Mathematics and Computation, 375, 125079 (2020)
[39] Nguyen, L. H.V.; Bonnet, C.; Fioravanti, A. R., \(H_\infty \)-stability analysis of fractional delay systems of neutral type, SIAM Journal on Control and Optimization, 54, 2, 740-759 (2016) · Zbl 1333.93130
[40] Liu, M.; Dassios, I.; Milano, F., On the stability analysis of systems of neutral delay differential equations, Circuits, Systems, and Signal Processing, 38, 4, 1639-1653 (2019)
[41] Pahnehkolaei, S. M.A.; Alfi, A.; Machado, J. T., Delay-dependent stability analysis of the quad vector field fractional order quaternion-valued memristive uncertain neutral type leaky integrator echo state neural networks, Neural Networks, 117, 307-327 (2019) · Zbl 1443.93101
[42] El Fezazi, N.; El Haoussi, F.; Tissir, E. H.; Alvarez, T.; Tadeo, F., Robust stabilization using LMI techniques of neutral time-delay systems subject to input saturation, Journal of Physics: Conference Series, 783, 012031 (2017), IOP Publishing
[43] Chartbupapan, W.; Bagdasar, O.; Mukdasai, K., A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation, Mathematics, 8, 1, 82 (2020)
[44] Valério, D.; Trujillo, J. J.; Rivero, M.; Machado, J. T.; Baleanu, D., Fractional calculus: A survey of useful formulas, The European Physical Journal Special Topics, 222, 8, 1827-1846 (2013)
[45] Petersen, I. R., A stabilization algorithm for a class of uncertain linear systems, Systems & Control Letters, 8, 4, 351-357 (1987) · Zbl 0618.93056
[46] Gu, K.; Chen, J.; Kharitonov, V. L., Stability of time-delay systems (2003), Springer Science & Business Media · Zbl 1039.34067
[47] Iqbal, M.; Rehan, M.; Hong, K. S.; Khaliq, A., Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation, Chaos, Solitons & Fractals, 77, 158-169 (2015) · Zbl 1353.34057
[48] Liu, S.; Jiang, W.; Li, X.; Zhou, X. F., Lyapunov stability analysis of fractional nonlinear systems, Applied Mathematics Letters, 51, 13-19 (2016) · Zbl 1356.34061
[49] Zhang, F., The Schur complement and its applications, 4 (2006), Springer Science & Business Media
[50] Liao, X.; Chen, G.; Sanchez, E. N., LMI-based approach for asymptotically stability analysis of delayed neural networks, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49, 7, 1033-1039 (2002) · Zbl 1368.93598
[51] Elahi, A.; Alfi, A., Finite-time \(H_\infty\) control of uncertain networked control systems with randomly varying communication delays, ISA Transactions, 69, 65-88 (2017)
[52] Hövel, P., Control of complex nonlinear systems with delay (2010), Springer Science & Business Media · Zbl 1207.37002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.