×

Quantum fluctuations of the compact phase space cosmology. (English) Zbl 1481.83093

Summary: In the recent article [the aithors, Phys. Rev. D 100, No. 4, Article ID 043533, 15 p, (2019; doi:10.1103/PhysRevD.100.043533)] a compact phase space generalization of the flat de Sitter cosmology has been proposed. The main advantages of the compactification is that physical quantities are bounded, and the quantum theory is characterized by finite dimensional Hilbert space. Furthermore, by considering the \(\mathbb{S}^2\) phase space, quantum description is constructed with the use SU(2) representation theory. The purpose of this article is to apply effective methods to analyze quantum dynamics of the model at the semi-classical regime. The analysis is performed both without prior solving of the quantum constraint and by extracting physical Hamiltonian of the model. At the effective level, the results of the two procedures are shown to be equivalent. We find a nontrivial behavior of the fluctuations around the recollapse of the Universe, which is distinct from what is found after quantization with the standard flat phase space. The behavior is reflected at the level of the modified Friedmann equation with quantum back-reaction effects, which is derived. Finally, a relation between quantum fluctuations in the minisuperspace model under consideration and the Bousso bound has been found. It has been shown that the Bousso bound can be violated for certain choices of semiclassical states.

MSC:

83F05 Relativistic cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory
83C45 Quantization of the gravitational field
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81T33 Dimensional compactification in quantum field theory
22E70 Applications of Lie groups to the sciences; explicit representations
81T12 Effective quantum field theories
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory

References:

[1] Born, M., Rev. Mod. Phys., 21, 463 (1949) · Zbl 0035.27206 · doi:10.1103/revmodphys.21.463
[2] Mielczarek, J.; Trześniewski, T., Phys. Lett. B, 759, 424 (2016) · Zbl 1367.81099 · doi:10.1016/j.physletb.2016.06.006
[3] Ashtekar, A.; Schilling, T. A. (1997)
[4] Snyder, H. S., Phys. Rev., 71, 38 (1947) · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[5] Majid, S., Lecture Notes in Physics, vol 541, p 227 (2000), (Berlin: Springer), (Berlin
[6] Connes, A., Noncommutative Geometry (1994), (London: Academic Press), (London · Zbl 0681.55004
[7] Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L., Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.084010
[8] Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L.; Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L., Gen. Relativ. Gravit.. Int. J. Mod. Phys. D, 20, 2867 (2011) · Zbl 1228.83040 · doi:10.1142/s0218271811020743
[9] Ashtekar, A.; Lewandowski, J., Class. Quantum Grav., 21, R53 (2004) · Zbl 1263.83064 · doi:10.1088/0264-9381/21/15/r01
[10] Rovelli, C., Living Rev. Relativ., 1, 1 (1998) · Zbl 1077.83017 · doi:10.12942/lrr-1998-1
[11] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity : An Elementary Introduction to Quantum Gravity and Spinfoam Theory (2014), (Cambridge: Cambridge University Press), (Cambridge · Zbl 1023.83013 · doi:10.12942/lrr-1998-1
[12] Bojowald, M., Living Rev. Relativ., 11, 4 (2008) · Zbl 1432.81065 · doi:10.12942/lrr-2008-4
[13] Ashtekar, A.; Singh, P., Class. Quantum. Grav., 28 (2011) · Zbl 1316.83035 · doi:10.1088/0264-9381/28/21/213001
[14] Bojowald, M., Phys. Rev. Lett., 86, 5227 (2001) · Zbl 1230.83003 · doi:10.1103/physrevlett.86.5227
[15] Ashtekar, A.; Pawlowski, T.; Singh, P., Phys. Rev. Lett., 96 (2006) · doi:10.1103/physrevlett.96.141301
[16] Born, M.; Infeld, L., Proc. R. Soc. A, 144, 425 (1934) · Zbl 1153.83417 · doi:10.1098/rspa.1934.0059
[17] Riello, A., Phys. Rev. D, 97 (2018) · Zbl 0008.42203 · doi:10.1103/physrevd.97.025003
[18] Dittrich, B., J. High Energy Phys. (2017) · doi:10.1088/1126-6708/2009/05/123
[19] Haggard, H. M.; Han, M.; Riello, A., Ann. Henri Poincaré, 17, 2001 (2016) · Zbl 1345.83015 · doi:10.1007/s00023-015-0455-4
[20] Bilski, J.; Brahma, S.; Marcianò, A.; Mielczarek, J., Int. J. Mod. Phys. D 28, no, 01, 1950020 (2018) · Zbl 1345.83015 · doi:10.1142/s0218271819500202
[21] Mielczarek, J.; Trześniewski, T., Phys. Rev. D, 96 (2017) · Zbl 1431.81069 · doi:10.1103/physrevd.96.024012
[22] Mielczarek, J., Universe, 3, 29 (2017) · doi:10.3390/universe3020029
[23] Artigas, D.; Mielczarek, J.; Rovelli, C., Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.043533
[24] Caldwell, R. R.; Kamionkowski, M.; Weinberg, N. N., Phantom energy: dark energy with w < −1 causes a cosmic doomsday, Phys. Rev. Lett., 91 (2003) · doi:10.1103/physrevlett.91.071301
[25] Pinto-Neto, N.; Fabris, J. C., Class. Quantum Grav., 30 (2013) · Zbl 1273.83003 · doi:10.1088/0264-9381/30/14/143001
[26] Martin, B.; Barbara, S.; Aureliano, S.; Artur, T., Rev. Math. Phys., 21, 111-154 (2009) · Zbl 1273.83003 · doi:10.1142/s0129055x09003591
[27] Agullo, I.; Corichi, A. (2013) · Zbl 1167.81025 · doi:10.1142/s0129055x09003591
[28] Mielczarek, J.; Piechocki, W., Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.043529
[29] Ashtekar, A.; Pawlowski, T.; Singh, P., Phys. Rev. D, 74 (2006) · doi:10.1103/physrevd.74.084003
[30] Mielczarek, J.; Stachowiak, T.; Szydlowski, M., Phys. Rev. D, 77 (2008) · Zbl 1197.83047 · doi:10.1103/physrevd.77.123506
[31] Dzierzak, P.; Malkiewicz, P.; Piechocki, W., Phys. Rev. D, 80 (2009) · doi:10.1103/physrevd.80.104001
[32] Rovelli, C., Quantum Gravity (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1091.83001 · doi:10.1103/physrevd.80.104001
[33] Bojowald, M., Canonical Gravity and Applications Cosmology, Black Holes, and Quantum Gravity (2011), Cambridge: Cambridge University Press, Cambridge · Zbl 1091.83001 · doi:10.1017/CBO9780511755804
[34] Baytas, B.; Bojowald, M., Phys. Rev. D, 95 (2017) · Zbl 1210.83001 · doi:10.1103/physrevd.95.086007
[35] Susskind, L., J. Math. Phys., 36, 6377 (1995) · Zbl 0850.00013 · doi:10.1063/1.531249
[36] Bousso, R., J. High Energy Phys. (1999) · Zbl 0850.00013 · doi:10.1088/1126-6708/1999/07/004
[37] Bousso, R., Rev. Mod. Phys., 74, 825 (2002) · Zbl 0951.83011 · doi:10.1103/revmodphys.74.825
[38] Ade, P. A R.; Planck Collaboration, Astron. Astrophys., 594, A13 (2016) · Zbl 1205.83025 · doi:10.1103/revmodphys.74.825
[39] Artymowski, M.; Mielczarek, J., Eur. Phys. J. C, 79, 632 (2019) · doi:10.1140/epjc/s10052-019-7131-7
[40] Cailleteau, T.; Mielczarek, J.; Barrau, A.; Grain, J., Class. Quantum Grav, 29 (2012) · Zbl 1242.83113 · doi:10.1088/0264-9381/29/9/095010
[41] Cailleteau T, Mielczarek J, Barrau A and Grain J 2012 Class. Quantum Grav29 095010 · Zbl 1242.83113 · doi:10.1088/0264-9381/29/9/095010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.