×

A third-order weighted variational reconstructed discontinuous Galerkin method for solving incompressible flows. (English) Zbl 1481.76073

Summary: In this paper, a third-order reconstructed discontinuous Galerkin (DG) method based on a weighted variational minimization principle, which is denoted as \(P_1 P_2\)(WVr) method, is presented for solving the incompressible flows on unstructured grids. In this method, the first-order degrees of freedom (DoFs) are obtained directly from the underlying second-order DG method, while the second-order DoFs are reconstructed through the weighted variational reconstruction. Specifically, we first introduce a weighted interfacial jump integration (WIJI) function which represents a measure of the jump between the reconstructed polynomial solutions from two neighboring cells. Then, we build the constitutive relations by minimizing this WIJI function using the variational method. A number of incompressible flow problems in both steady and unsteady forms are presented to assess the performance of the proposed \(P_1 P_2\)(WVr) method. The numerical results demonstrate that the \(P_1 P_2\)(WVr) method is able to achieve the designed optimal third-order accuracy at a significantly reduced computational costs. Moreover, when a suitable value of the weight parameter is chosen to be used, the \(P_1 P_2\)(WVr) method outperforms the reconstructed DG methods based on either least-squares or Green-Gauss reconstruction for the simulations of incompressible flows.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Reed, W. H.; Hill, T. R., Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Report, LA-UR-73-479 (1973)
[2] Cockburn, B.; Hou, S.; Shu, . C.W., TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 55, 545-581 (1990) · Zbl 0695.65066
[3] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws v: multimensional system, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[4] Liu, J.-G.; Shu, C. W., A high-order discontinuous Galerkin method for 2d incompressible flows, J. Comput. Phys., 160, 577-596 (2000) · Zbl 0963.76069
[5] Cockburn, B.; Kanschat, G.; Schotzau, D.; Schwab, C., Local discontinuous Galerkin methods for the stokes system, SIAM J. Numer. Anal., 40, 319-343 (2002) · Zbl 1032.65127
[6] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comput., 74, 1067-1095 (2005) · Zbl 1069.76029
[7] Bassi, F.; Crivellini, A.; Pietro, D. A.D.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 218, 794-815 (2006) · Zbl 1158.76313
[8] F. Bassi, A. Crivellini, D.A.D. Pietro, S. Rebay, An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, 2007, Comput. Fluids. 36, 1529-1546. · Zbl 1194.76102
[9] Zhang, F.; Tang, H. S.; Cheng, J.; Liu, T. G., A simplified artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, Commun. Comput. Phys., 25, 998-1009 (2019) · Zbl 1473.65220
[10] Zhang, F.; Cheng, J.; Liu, T. G., A direct discontinuous Galerkin method for the incompressible Navier-Stokes equations on arbitrary grids, J. Comput. Phys., 380, 269-294 (2019) · Zbl 1451.76074
[11] Cockburn, B.; Shu, C. W., Runge-Kutta discontinuous Galerkin methods for convection-dominated flows, J. Sci. Comput., 16, 173-261 (2001) · Zbl 1065.76135
[12] Cockburn, B., Discontinuous Galerkin methods, ZAMM Z. Angew. Math. Mech., 83, 731-754 (2003) · Zbl 1036.65079
[13] Cockburn, B., Discontinuous Galerkin methods for computational fluids dynamics, (de Borst, R.; Stein, E.; Hughes, T. J.R., Encyclopedia of Computational Mechanics, 3 (2004), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. England), 91-123
[14] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[15] Dumbser, M., Arbitrary high-order accurate \(p_{N P_m}\) schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput. Fluids, 39, 60-76 (2010) · Zbl 1242.76161
[16] van Leer, B.; Nomura, S., Discontinuous Galerkin method for diffusion, AIAA, 2005-5108 (2005)
[17] van Leer, B.; Lo, M.; van Raalte, M., A discontinuous Galerkin method for diffusion based on recovery, AIAA 2007-4083 (2007)
[18] Raalte, M.; van Leer, B., Bilinear forms for the recovery-based discontinuous Galerkin method for diffusion, Commun. Comput. Phys., 5, 683-693 (2009) · Zbl 1364.65261
[19] Luo, H.; Luo, L. Q.; Nourgaliev, R.; Mousseau, V. A.; Dinh, N., A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, J. Comput. Phys., 229, 6961-6978 (2010) · Zbl 1425.35138
[20] Luo, H.; Luo, L. Q.; Ali, A.; Nourgaliev, R.; Cai, C. P., A parallel, reconstructed discontinuous Galerkin method for the compressible flows on arbitrary grids, Commun. Comput. Phys., 9, 363-389 (2011) · Zbl 1364.76090
[21] Luo, H.; Luo, L. Q.; Nourgaliev, R., A reconstructed discontinuous Galerkin method for the euler equations on arbitrary grids, Commun. Comput. Phys., 12, 1495-1519 (2012) · Zbl 1388.65124
[22] Pandare, A. K.; Luo, H., A hybrid reconstructed dicontinuous Galerkin and continuous Galerkin finite element method for incompressible flows on unstructured grids, J. Compt. Phys., 322, 491-510 (2016) · Zbl 1351.76075
[23] Cheng, J.; Liu, T. G.; Luo, H., A hybrid reconstructed discontinuous Galerkin method for compressible flows on arbitrary grids, Comput. Fluids, 139, 68-79 (2016) · Zbl 1390.76300
[24] Zhang, F.; Cheng, J.; Liu, T. G., A reconstructed discontinuous Galerkin method for incompressible flows on arbitrary grids, J. Comput. Phys., 418, 109580 (2020) · Zbl 07506160
[25] Zhang, L. P.; Liu, W.; He, L. X.; Deng, X. G.; Zhang, H. X., A class of hybrid DG/FV methods for conservation laws I: basic formulation and one-dimensional systems, J. Comput. Phys., 231, 1081-1103 (2012) · Zbl 1242.65205
[26] Zhang, L. P.; Liu, W.; He, L. X.; Deng, X. G.; Zhang, H. X., A class of hybrid DG/FV schemes for 2d conservation scalar law II: two-dimensional cases, J. Comput. Phys., 231, 1104-1120 (2012) · Zbl 1242.65206
[27] Zhang, L. P.; Liu, W.; Li, M.; Zhang, H. X., A class of hybrid DG/FV schemes for 2d conservation scalar law IV: 2d viscous flows and implicit algorithm for steady cases, Comput. Fluids, 97, 110-125 (2014) · Zbl 1391.76374
[28] Wang, Q.; Ren, Y.-X.; Li, W. N., Compact high order finite volume method on unstructured grids I: basic formulations and one-dimensional schemes, J. Comput. Phys., 314, 863-882 (2016) · Zbl 1349.65387
[29] Wang, Q.; Ren, Y.-X.; Pan, J. H.; Li, W. N., Compact high order finite volume method on unstructured grids II: extension to two-dimensional euler equations, J. Comput. Phys., 314, 883-908 (2016) · Zbl 1349.76404
[30] Wang, Q.; Ren, Y.-X.; Pan, J. H.; Li, W. N., Compact high order finite volume method on unstructured grids III: variational reconstruction, J. Comput. Phys., 337, 1-26 (2017) · Zbl 1415.76482
[31] Zhang, Y.-S.; Ren, Y.-X.; Wang, Q., Compact high order finite volume method on unstructured grids IV: explicit multi-step reconstruction schemes on compact stencil, J. Comput. Phys., 396, 161-192 (2019) · Zbl 1452.76141
[32] Li, L. Q.; Liu, X. D.; Lou, J. L.; Luo, H.; Nishikawa, H.; Ren, Y. X., A reconstructed discontinuous Galerkin method based on variational reconstruction for compressible flows on arbitrary grids, AIAA 2018-0831 (2018)
[33] Cheng, J.; Liu, T. G., A variational reconstructed discontinuous Galerkin method for the steady-state compressible flows on unstructured grids, J. Comput. Phys., 380, 65-87 (2019) · Zbl 1451.76066
[34] Luo, H.; Baum, J. D.; Löhner, R., A discontinuous Galerkin method based on a taylor basis for the compressible flows on arbitrary grids, J. Comput. Phys., 227, 8875-8893 (2008) · Zbl 1391.76350
[35] Liu, H. L.; Yan, J., The direct discontinuous Galerkin (DDG) methods for diffusion problems, SIAM J. Numer. Anal., 47, 675-698 (2009) · Zbl 1189.65227
[36] Liu, H. L.; Yan, J., The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections, Commun. Comput. Phys., 8, 541-564 (2010) · Zbl 1364.65200
[37] Cheng, J.; Yang, X. Q.; Liu, X. D.; Liu, T. G.; Luo, H., A direct discontinuous Galerkin method for the compressible Navier-Stokes equation on arbitrary grids, J. Comput. Phys., 327, 484-502 (2016) · Zbl 1373.76285
[38] Bassi, F.; Crivellini, A.; Pietro, D. A.D.; Rebay, S., An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, Comput. Fluids, 36, 1529-1546 (2007) · Zbl 1194.76102
[39] Saad, Y.; Schultz, M. H., GMRES: a generalizedminimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[40] Luo, H.; Baum, J. D.; Löner, R., A fast, matrix-free implicit method for compressible flows on unstructured grids, J. Comput. Phys., 146, 664-690 (1998) · Zbl 0931.76045
[41] Kovasznay, L. S.G., Laminar flow between a two-dimensional grid, Proc. Camb. Philos. Soc., 44, 58-62 (1948) · Zbl 0030.22902
[42] Shahbazi, K.; Fischer, P.; Ethier, C. R., A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 222, 391-407 (2007) · Zbl 1216.76034
[43] Blasius, H., Grenzschichten in flüssigkeiten mit kleiner reibung, Z. Angew. Math. Phys., 56, 1-37 (1908) · JFM 39.0803.02
[44] Hajihassanpour, M.; Hejranfar, K., An implicit dual-time stepping high-order nodal discontinuous Galerkin method for solving incompressible flows on triangle elements, Math. Comput. Simul., 168, 173-214 (2020) · Zbl 1510.76088
[45] Hejranfar, K.; Ezzatneshan, E., Implenting a high-order compact finite-difference lattice Boltzmann method in generalized curvilinear coordinates, J. Comput. Phys., 267, 28-49 (2014) · Zbl 1349.76475
[46] Dennis, S. C.R.; Chang, G. Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J. Fluid Mech.,, 42, 471-489 (1970) · Zbl 0193.26202
[47] Bharti, R. P.; Chhabra, R. P.; Eswaran, V., Steady flow of power law fluids across a circular cylinder, Can. J. Chem. Eng., 84, 406-421 (2008)
[48] Shah, A.; Yuan, L.; Islam, S., Numerical solution of unsteady Navier-Stokes equations on curvilinear meshes, Comput. Math. Appl., 63, 1548-1556 (2010) · Zbl 1247.76057
[49] Frank, R.; Rodi, W.; Schonung, B., Numerical calculation of laminar vortex-shedding flow past cylinders, J. Wind Eng. Ind. Aerodyn., 35, 237-257 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.