×

Liquid crystal elastomer strips as soft crawlers. (English) Zbl 1481.76023

Summary: In this paper, we speculate on a possible application of Liquid Crystal Elastomers to the field of soft robotics. In particular, we study a concept for limbless locomotion that is amenable to miniaturisation. For this purpose, we formulate and solve the evolution equations for a strip of nematic elastomer, subject to directional frictional interactions with a flat solid substrate, and cyclically actuated by a spatially uniform, time-periodic stimulus (e.g., temperature change). The presence of frictional forces that are sensitive to the direction of sliding transforms reciprocal, ‘breathing-like’ deformations into directed forward motion. We derive formulas quantifying this motion in the case of distributed friction, by solving a differential inclusion for the displacement field. The simpler case of concentrated frictional interactions at the two ends of the strip is also solved, in order to provide a benchmark to compare the continuously distributed case with a finite-dimensional benchmark. We also provide explicit formulas for the axial force along the crawler body.

MSC:

76A15 Liquid crystals
74M10 Friction in solid mechanics

References:

[1] Agostiniani, V.; DeSimone, A., Ogden-type energies for nematic elastomers, Int. J. Nonlinear Mech., 47, 402-412 (2011)
[2] Agostiniani, V.; DeSimone, A., Gamma-convergence of energies for nematic elastomers in the small strain limit, Cont. Mech. Thermodyn., 23, 257-274 (2011) · Zbl 1272.76028
[3] Alberti, G.; DeSimone, A., Quasistatic evolution of sessile drops and contact angle hysteresis, Arch. Ration. Mech. Anal., 202, 295-348 (2011) · Zbl 1276.76016
[4] Armon, S.; Efrati, E.; Kupferman, R.; Sharon, E., Geometry and mechanics in the opening of chiral seed pods, Science, 333, 1726-1730 (2011)
[5] Arroyo, M.; Heltai, L.; Millán, D.; DeSimone, A., Reverse engineering the euglenoid movement, Proc. Natl. Acad. Sci. USA, 109, 17874-17879 (2012)
[6] Arroyo, M.; DeSimone, A., Shape control of active surfaces inspired by the movement of euglenids, J. Mech. Phys. Solids, 62, 99-112 (2014) · Zbl 1323.92034
[7] Bhattacharya, K.; James, R., The material is the machine, Science, 307, 53-54 (2005)
[8] Bladon, P.; Terentjev, E. M.; Warner, M., Transitions and instabilities in liquid-crystal elastomers, Phys. Rev. E, 47, R3838-R3840 (1993)
[9] Camacho-Lopez, M.; Finkelmann, H.; Palffy-Muhoray, P.; Shelley, M., Fast liquid-crystal elastomer swims into the dark, Nat. Mater., 3, 307-310 (2004)
[10] Cesana, P.; DeSimone, A., Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications, J. Mech. Phys. Solids, 59, 787-803 (2011) · Zbl 1270.74024
[13] Conti, S.; DeSimone, A.; Dolzmann, G., Soft elastic response of stretched sheets of nematic elastomers: a numerical study, J. Mech. Phys. Solids, 50, 1431-1451 (2002) · Zbl 1030.76006
[14] Conti, S.; DeSimone, A.; Dolzmann, G., Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers, Phys. Rev. E, 66, 061710:1-061710:8 (2002)
[15] DeSimone, A., Energetics of fine domain structures, Ferroelectrics, 222, 275-284 (1999)
[16] DeSimone, A.; Dolzmann, G., Material instabilities in nematic elastomers, Physica D, 136, 175-191 (2000) · Zbl 0947.76005
[17] DeSimone, A.; Dolzmann, G., Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies, Arch. Ration. Mech. Anal., 161, 181-204 (2002) · Zbl 1017.74049
[18] DeSimone, A.; Grunewald, N.; Otto, F., A new model for contact angle hysteresis, Netw. Heterog. Media, 2, 211-225 (2007) · Zbl 1125.76011
[19] DeSimone, A.; Teresi, L., Elastic energies for nematic elastomers, Eur. Phys. J. E, 29, 191-204 (2009)
[20] DeSimone, A.; Tatone, A., Crawling motility through the analysis of model locomotors: two case studies, Eur. Phys. J. E, 35, 85 (2012)
[21] DeSimone, A.; Guarnieri, F.; Noselli, G.; Tatone, A., Crawlers in viscous environments: linear vs non-linear rheology, Int. J. Non-Linear Mech., 56, 142-147 (2013)
[22] Fedeli, L.; Turco, A.; DeSimone, A., Metastable equilibria of capillary drops on solid surfaces: a phase field approach, Contin. Mech. Thermodyn., 23, 453-471 (2011) · Zbl 1272.76065
[23] Fukunaga, A.; Urayama, K.; Takigawa, T.; DeSimone, A.; Teresi, L., Dynamics of electro-opto-mechanical effects in swollen nematic elastomers, Macromolecules, 41, 9389-9396 (2008)
[24] Gidoni, P.; Noselli, G.; DeSimone, A., Crawling on directional surfaces, Int. J. Non-Linear Mech., 61, 65-73 (2014)
[25] Gray, J.; Lissmann, H. W., Studies in animal locomotion VII. Locomotory reflexes in the earthworm, J. Exp. Biol., 15, 506-517 (1938)
[26] Hancock, M. J.; Sekeroglu, K.; Demirel, M. C., Bioinspired directional surfaces for adhesion, wetting, and transport, Adv. Funct. Mater., 22, 2223-2234 (2012)
[27] Hirose, S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators (1993), Oxford University Press: Oxford University Press Oxford
[28] Ikeda, T.; Mamiya, J.; Yu, Y., Photomechanics of Liquid-Crystalline Elastomers and other polymers, Angew. Chem., 46, 506-528 (2007)
[29] Kim, S.; Laschi, C.; Trimmer, B., Soft robotics: a bio-inspired evolution in robotics, Trends Biotechnol., 31, 287-294 (2013)
[30] Knezevic, M.; Warner, M., Optomechanical elastomeric engine, Phys. Rev. E, 88, 040501:1-040501:4 (2013)
[31] Maeda, S.; Hara, Y.; Sakai, T.; Yoshida, R.; Hashimoto, S., Self-walking gel, Adv. Mater., 19, 3480-3484 (2007)
[32] Mahadevan, L.; Daniel, S.; Chaudhury, M. K., Biomimetic ratcheting motion of a soft, slender, sessile gel, Proc. Natl. Acad. Sci. USA, 101, 23-26 (2004)
[33] Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, Aditi, Hydrodynamics of soft active matter, Rev. Mod. Phys., 85, 1143-1189 (2013)
[34] McNeil, A. R., Principles of Animal Locomotion (2003), Princeton University Press: Princeton University Press Princeton
[35] Menciassi, A.; Accoto, D.; Gorini, S.; Dario, P., Development of a biomimetic miniature robotic crawler, Auton. Robot., 21, 155-163 (2006)
[36] Miehe, C.; Schotte, J.; Lambrecht, M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals, J. Mech. Phys. Solids, 50, 2123-2167 (2002) · Zbl 1151.74403
[37] Noselli, G.; DeSimone, A.; Tatone, A., Discrete one-dimensional crawlers on viscous substrates: achievable net displacements and their energy cost, Mech. Res. Commun., 58, 73-81 (2013)
[38] Noselli, G.; DeSimone, A., A robotic crawler exploiting directional frictional interactions: experiments, numerics, and derivation of a reduced model, Proc. R. Soc. Lond. A, 470, 20140333 (2014)
[39] Ortiz, M.; Stanier, L., The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Eng., 171, 419-444 (1999) · Zbl 0938.74016
[40] Purcell, E. M., Life at low Reynolds number, Am. J. Phys., 45, 3-11 (1977)
[41] Quillin, K. J., Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris, J. Exp. Biol., 202, 661-674 (1999)
[42] Sawa, Y.; Urayama, K.; Takigawa, T.; DeSimone, A.; Teresi, L., Thermally driven giant bending of LCE films with hybrid alignment, Macromolecules, 43, 4362-4369 (2010)
[43] Stefanini, C.; Menciassi, A.; Dario, P., Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment, Int. J. Robot. Res., 25, 551-560 (2006)
[44] Tanaka, Y.; Ito, K.; Nakagaki, T.; Kobayashi, R., Mechanics of peristaltic locomotion and role of anchoring, J. R. Soc. Interface, 9, 222-233 (2012)
[45] Trivedi, D.; Rahn, C. D.; Kier, W. M.; Walker, I. D., Soft robotics: biological inspiration, state of the art, and future research, Appl. Bionics Biomech., 5, 99-117 (2008)
[46] van Oosten, C. L.; Corbett, D.; Davies, D.; Warner, M.; Bastiaansen, C. W.M.; Broer, D. J., Bending dynamics and directionality reversal in liquid crystal network photoactuators, Macromolecules, 41, 8592-8596 (2008)
[47] Verwey, G. C.; Warner, M.; Terentjev, E. M., Elastic instability and stripe domains in liquid crystalline elastomers, J. Phys. II France, 34, 1273-1290 (1996)
[48] Warner, M.; Terentjev, E. M., Liquid Crystal Elastomers (2003), Clarendon Press: Clarendon Press Oxford
[49] Wei, J.; Yu, Y., Photodeformable polymer gels and crosslinked liquid-crystalline polymers, Soft Matter, 8, 8050-8059 (2012)
[50] Yoshida, R.; Takahashi, T.; Yamaguchi, T.; Ichijo, H., Self-oscillating gel, J. Am. Chem. Soc., 118, 5134-5135 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.