×

Topology optimization of acoustic metasurfaces by using a two-scale homogenization method. (English) Zbl 1481.74621

Summary: In this paper, we propose a level set-based topology optimization method for the unit-cell design of acoustic metasurfaces by using a two-scale homogenization method. Based on previous works, we first propose a homogenization method for acoustic metasurfaces that can be combined with topology optimization. In this method, a nonlocal transmission condition depending on the unit cell of the metasurface appears in a macroscale problem. Next, we formulate an optimization problem within the framework of a level set-based topology optimization method, wherein an objective functional is expressed as the macroscopic responses obtained through the homogenization, and material distributions in the unit cell are set as design variables. A sensitivity analysis is conducted based on the concept of the topological derivative. To confirm the validity of the proposed method, two-dimensional numerical examples are provided. First, we provide a numerical example that supports the validity of the homogenization method, and we then perform optimization calculations based on the waveguide settings of the acoustic metasurfaces. In addition, we discuss the mechanism of the obtained optimized structures.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
49J45 Methods involving semicontinuity and convergence; relaxation
49Q12 Sensitivity analysis for optimization problems on manifolds

Software:

FreeFem++

References:

[1] Veselago, V. G., The electrodynamics of substances with simultaneously negative values of \(\epsilon\) and \(\mu \), Soviet Phys. Uspekhi, 10, 4, 509 (1968)
[2] Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.; Yang, Z.; Chan, C. T.; Sheng, P., Locally resonant sonic materials, Science, 289, 5485, 1734-1736 (2000)
[3] Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X., Ultrasonic metamaterials with negative modulus, Nat. Mater., 5, 6, 452 (2006)
[4] Huang, H.; Sun, C.; Huang, G., On the negative effective mass density in acoustic metamaterials, Int. J. Eng. Sci., 47, 4, 610-617 (2009)
[5] Huang, H.; Sun, C., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New J. Phys., 11, 1, 013003 (2009)
[6] Li, J.; Chan, C., Double-negative acoustic metamaterial, Phys. Rev. E, 70, 5, 055602 (2004)
[7] Ding, Y.; Liu, Z.; Qiu, C.; Shi, J., Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett., 99, 9, 093904 (2007)
[8] Zigoneanu, L.; Popa, B.-I.; Cummer, S. A., Three-dimensional broadband omnidirectional acoustic ground cloak, Nat. Mater., 13, 4, 352-355 (2014)
[9] Li, J.; Fok, L.; Yin, X.; Bartal, G.; Zhang, X., Experimental demonstration of an acoustic magnifying hyperlens., Nat. Mater., 8, 12, 931-934 (2009)
[10] Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P., Acoustic metasurface with hybrid resonances, Nat. Mater., 13, 9, 873-878 (2014)
[11] Xie, Y.; Wang, W.; Chen, H.; Konneker, A.; Popa, B.-I.; Cummer, S. A., Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nat. Commun., 5 (2014)
[12] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech.Eng., 71, 2, 197-224 (1988) · Zbl 0671.73065
[13] Sigmund, O.; Jensen, J. S., Systematic design of phononic band-gap materials and structures by topology optimization, Philos. Trans. R. Soc. Lond. A, 361, 1806, 1001-1019 (2003) · Zbl 1067.74053
[14] Wadbro, E.; Berggren, M., Topology optimization of an acoustic horn, Comput. Methods Appl. Mech.Eng., 196, 1, 420-436 (2006) · Zbl 1120.76359
[15] Du, J.; Olhoff, N., Minimization of sound radiation from vibrating bi-material structures using topology optimization, Struct. Multidiscip. Optim., 33, 4, 305-321 (2007)
[16] Dühring, M. B.; Jensen, J. S.; Sigmund, O., Acoustic design by topology optimization, J. Sound Vib., 317, 3, 557-575 (2008)
[17] Dilgen, C. B.; Dilgen, S. B.; Aage, N.; Jensen, J. S., Topology optimization of acoustic mechanical interaction problems: a comparative review, Struct. Multidiscip. Optim., 1-23 (2019)
[18] Diaz, A. R.; Sigmund, O., A topology optimization method for design of negative permeability metamaterials, Struct. Multidiscip. Optim., 41, 2, 163-177 (2010) · Zbl 1274.74262
[19] Lu, L.; Yamamoto, T.; Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S., Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance, Finite Elem. Anal. Des., 72, 1-12 (2013) · Zbl 1302.74165
[20] Noguchi, Y.; Yamada, T.; Otomori, M.; Izui, K.; Nishiwaki, S., An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization, Appl. Phys. Lett., 107, 22, 221909 (2015)
[21] Christiansen, R. E.; Sigmund, O., Designing meta material slabs exhibiting negative refraction using topology optimization, Struct. Multidiscip. Optim., 54, 3, 469-482 (2016)
[22] Roca, D.; Yago, D.; Cante, J.; Lloberas-Valls, O.; Oliver, J., Computational design of locally resonant acoustic metamaterials, Comput. Methods Appl. Mech.Eng., 345, 161-182 (2019) · Zbl 1440.74236
[23] Smith, D.; Vier, D.; Koschny, T.; Soukoulis, C., Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E, 71, 3, 036617 (2005)
[24] Fokin, V.; Ambati, M.; Sun, C.; Zhang, X., Method for retrieving effective properties of locally resonant acoustic metamaterials, Phys. Rev. B, 76, 14, 144302 (2007)
[25] E. Sanchez-Palencia, Non-homogeneous media and vibration theory. 1980, Lect. Notes Phys. 127(????). · Zbl 0432.70002
[26] Bakhvalov, N. S.; Panasenko, G., Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials, 36 (1989), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0692.73012
[27] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures, 5 (1978), North-Holland Publishing Company Amsterdam · Zbl 0411.60078
[28] Santosa, F.; Symes, W. W., A dispersive effective medium for wave propagation in periodic composites, SIAM J. Appl. Math., 51, 4, 984-1005 (1991) · Zbl 0741.73017
[29] Smyshlyaev, V. P.; Cherednichenko, K., On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media, J. Mech. Phys. Solids, 48, 6, 1325-1357 (2000) · Zbl 0984.74065
[30] Abdulle, A.; Grote, M. J.; Stohrer, C., Finite element heterogeneous multiscale method for the wave equation: long-time effects, Multiscale Model. Simul., 12, 3, 1230-1257 (2014) · Zbl 1315.65084
[31] Dohnal, T.; Lamacz, A.; Schweizer, B., Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simul., 12, 2, 488-513 (2014) · Zbl 1320.35043
[32] Allaire, G.; Briane, M.; Vanninathan, M., A comparison between two-scale asymptotic expansions and bloch wave expansions for the homogenization of periodic structures, SEMA J., 73, 3, 237-259 (2016) · Zbl 1364.35029
[33] Craster, R. V.; Kaplunov, J.; Pichugin, A. V., High-frequency homogenization for periodic media, Proc. R. Soc. A, 466, 2120, 2341-2362 (2010) · Zbl 1196.35038
[34] Antonakakis, T.; Craster, R. V.; Guenneau, S., Asymptotics for metamaterials and photonic crystals, Proc. R. Soc. A, 469, 2152, 20120533 (2013)
[35] Noguchi, Y.; Yamada, T.; Izui, K.; Nishiwaki, S., Topology optimization for hyperbolic acoustic metamaterials using a high-frequency homogenization method, Comput. Methods Appl. Mech.Eng., 335, 419-471 (2018) · Zbl 1440.74307
[36] Marigo, J.-J.; Maurel, A., Homogenization models for thin rigid structured surfaces and films, J. Acoust. Soc. Am., 140, 1, 260-273 (2016)
[37] Marigo, J.-J.; Maurel, A., Two-scale homogenization to determine effective parameters of thin metallic-structured films, Proc. R. Soc. A, 472, 2192, 20160068 (2016) · Zbl 1371.78088
[38] Rohan, E.; Lukeš, V., Homogenization of the acoustic transmission through a perforated layer, J. Comput. Appl. Math., 234, 6, 1876-1885 (2010) · Zbl 1407.76142
[39] Rohan, E.; Lukeš, V., Homogenization of the vibro-acoustic transmission on perforated plates, Appl. Math. Comput., 361, 821-845 (2019) · Zbl 1428.76194
[40] Rohan, E.; Lukeš, V., Sensitivity analysis for acoustic waves propagating through homogenized thin perforated layer, Proceedings of ISMA (2010) · Zbl 1407.76142
[41] Rohan, E.; Lukeš, V., Optimal design in vibro-acoustic problems involving perforated plates, Proc. 11th International Conference on Vibration Problems (ICOVP-2013), Z. Dimitrovová et. al.(eds.) Lisbon, Portugal, AMPTAC, article, 1-10 (2013)
[42] Cioranescu, D.; Damlamian, A.; Griso, G., The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40, 4, 1585-1620 (2008) · Zbl 1167.49013
[43] Andkjær, J.; Sigmund, O., Topology optimized cloak for airborne sound, J. Vib. Acoust., 135, 4, 041011 (2013)
[44] Carpio, A.; Rapun, M., Solving inhomogeneous inverse problems by topological derivative methods, Inverse Problems, 24, 4, 045014 (2008) · Zbl 1153.35401
[45] Carpio, A.; Rapún, M. L., Topological derivatives for shape reconstruction, Inverse Problems and Imaging, 85-133 (2008), Springer · Zbl 1144.65307
[46] Novotny, A. A.; Feijóo, R. A.; Taroco, E.; Padra, C., Topological sensitivity analysis, Comput. Methods Appl. Mech.Eng., 192, 7, 803-829 (2003) · Zbl 1025.74025
[47] Feijóo, R. A.; Novotny, A. A.; Taroco, E.; Padra, C., The topological derivative for the poisson’s problem, Math. Models Methods Appl.Sci., 13, 12, 1825-1844 (2003) · Zbl 1063.49030
[48] Yamada, T.; Izui, K.; Nishiwaki, S.; Takezawa, A., A topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Methods Appl. Mech.Eng., 199, 45, 2876-2891 (2010) · Zbl 1231.74365
[49] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[50] Hecht, F., New development in freefem++, J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090
[51] Dapogny, C.; Dobrzynski, C.; Frey, P., Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys., 262, 358-378 (2014) · Zbl 1349.76598
[52] Semin, A.; Delourme, B.; Schmidt, K., On the homogenization of the Helmholtz problem with thin perforated walls of finite length, ESAIM, 52, 1, 29-67 (2018) · Zbl 1397.32004
[53] Cea, J., Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût, ESAIM, 20, 3, 371-402 (1986) · Zbl 0604.49003
[54] Amstutz, S., Sensitivity analysis with respect to a local perturbation of the material property, Asymptotic Anal., 49 (2006) · Zbl 1187.49036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.