×

Analytic solutions for twin tunneling at great depth considering liner installation and mutual interaction between geomaterial and liners. (English) Zbl 1481.74537

Summary: Analytic solutions for stress and displacement of twin tunneling at great depth considering liner installation and mutual interaction between geomaterial and liners are the key context in this paper. Twin tunneling is a continuous procedure, in which after one tunnel is excavated and lined, the other one is hysteretically excavated and lined. The presented solutions mainly focus on stress and displacement in geomaterial and liners for the hysteretical phases through an iterative combination of the complex variable method and the Fourier transform via the Schwarz alternating method. The presented solutions are verified by comparing to a corresponding numerical solution of a general case, in which a good agreement is observed after three iterations. Subsequently, a dimensionless parametric investigation is performed to investigate the influence of tunnel geometry (including twin tunnel spacing, relative angle of twin tunnels and relative size of twin tunnels), liner properties (including liner thickness and liner installation), and lateral stress coefficient on stress and displacement in both liners and geomaterial.

MSC:

74L10 Soil and rock mechanics
86A04 General questions in geophysics
Full Text: DOI

References:

[1] Ghaboussi, J.; Ranken, R. E., Interaction between two parallel tunnels, Int. J. Numer. Anal. Methods Geomech., 1, 1, 75-103 (1977)
[2] Addenbrooke, T. I.; Potts, D. M., Twin tunnel interaction: surface and subsurface effects, Int. J. Geomech., 1, 2, 249-271 (2001)
[3] Fang, Q.; Tai, Q.; Zhang, D.; Wong, L. N.Y., Ground surface settlements due to construction of closely-spaced twin tunnels with different geometric arrangements, Tunn. Undergr. Space Technol., 51, 144-151 (2016)
[4] Karakus, M.; Ozsan, A.; Başarır, H., Finite element analysis for the twin metro tunnel constructed in Ankara Clay, Turkey, Bull. Eng. Geol. Environ., 66, 1, 71-79 (2007)
[5] Afifipour, M.; Sharifzadeh, M.; Shahriar, K.; Jamshidi, H., Interaction of twin tunnels and shallow foundation at Zand underpass, Shiraz metro, Iran, Tunn. Undergr. Space Technol., 26, 2, 356-363 (2011)
[6] Zhang, Z.; Huang, M., Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil, Comput. Geotech., 56, 3, 121-132 (2014)
[7] Sharifzadeh, M.; Kolivand, F.; Ghorbani, M.; Yasrobi, S., Design of sequential excavation method for large span urban tunnels in soft ground-Niayesh tunnel, Tunn. Undergr. Space Technol., 35, 178-188 (2013)
[8] Do, N. A.; Dias, D.; Oreste, P., 3D numerical investigation on the interaction between mechanized twin tunnels in soft ground, Environ. Earth Sci., 73, 5, 2101-2113 (2015)
[9] Do, N. A.; Dias, D.; Oreste, P., 3D numerical investigation of mechanized twin tunnels in soft ground – influence of lagging distance between two tunnel faces, Eng. Struct., 109, 117-125 (2016)
[10] Do, N. A.; Dias, D.; Oreste, P.; Djeran-Maigre, I., Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground, J. Zhejiang Univ. Sci. A, 15, 11, 896-913 (2014)
[11] Do, N. A.; Dias, D.; Oreste, P.; Djeran-Maigre, I., 2D numerical investigations of twin tunnel interaction, Geomech. Eng., 6, 3, 263-275 (2014)
[12] Soomro, M. A.; Ng, C. W.W.; Liu, K.; Memon, N. A., Pile responses to side-by-side twin tunnelling in stiff clay: effects of different tunnel depths relative to pile, Comput. Geotech., 84, 101-116 (2017)
[13] Chen, Z., Analytical Method of Rock Mechanics Analysis (1994), China Coal Industry Publishing House: China Coal Industry Publishing House Beijing
[14] Lu, A.; Zhang, L., Complex Function Method On Mechanical Analysis of Underground Tunnel (2007), Science Press: Science Press Beijing
[15] Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity (1966), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0151.36201
[16] Schwarz, H. A., Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschr. Naturforschenden Ges. Zürich, 15, 272-286 (1870)
[17] Salerno, V. L.; Mahoney, J. B., Stress solution for an infinite plate containing two arbitrary circular holes under equal biaxial stresses, J. Eng. Ind., 90, 4, 656-665 (1968)
[18] Zhang, L.; Lu, A., An analytic algorithm of stresses for any double hole problem in plane elastostatics, J. Appl. Mech., 68, 2, 350-353 (2001) · Zbl 1110.74792
[19] Zhang, L.; Lu, A.; Yue, Z.; Yang, Z., An efficient and accurate iterative stress solution for an infinite elastic plate around two elliptic holes, subjected to uniform loads on the hole boundaries and at infinity, Eur. J. Mech. - A/Solids, 28, 1, 189-193 (2009) · Zbl 1155.74376
[20] Zhang, L.; Yue, Z.; Lee, C. F.; Tham, L. G.; Yang, Z., Stress solution of multiple elliptic hole problem in plane elasticity, J. Eng. Mech., 129, 12, 1394-1407 (2003)
[21] Ting, K.; Chen, K. T.; Yang, W. S., Applied alternating method to analyze the stress concentration around interacting multiple circular holes in an infinite domain, Int. J. Solids Struct., 36, 4, 533-556 (1999) · Zbl 0945.74025
[22] Toshihiro, I.; Kazyu, M., Stress concentrations in a plate with two unequal circular holes, Int. J. Eng. Sci., 18, 8, 1077-1090 (1980) · Zbl 0442.73016
[23] Zimmerman, R. W., Second-order approximation for the compression of an elastic plate containing a pair of circular holes, Z. Angew. Math. Mech., 68, 11, 575-577 (1988) · Zbl 0673.73011
[24] Ukadgaonker, V. G., Stress analysis of a plate containing two circular holes having tangential stresses, AIAA J., 18, 1, 125-128 (2012) · Zbl 0418.73054
[25] Haddon, R., Stresses in an infinite plate with two unequal circular holes, Q. J. Mech. Appl. Math., 20, 3, 277-291 (1967) · Zbl 0153.28101
[26] Lu, A.; Xu, Z.; Zhang, N., Stress analytical solution for an infinite plane containing two holes, Int. J. Mech. Sci., 128-129, 224-234 (2017)
[27] Zeng, X.; Lu, A.; Zhang, N., Analytical stress solution for an infinite plate containing two oval holes, Eur. J. Mech. - A/Solids, 67, 1, 291-304 (2018) · Zbl 1406.74024
[28] Wang, H. N.; Zeng, G. S.; Utili, S.; Jiang, M. J.; Wu, L., Analytical solutions of stresses and displacements for deeply buried twin tunnels in viscoelastic rock, Int. J. Rock Mech. Min. Sci., 93, 13-29 (2017)
[29] Li, S.; Wang, M., An elastic stress – displacement solution for a lined tunnel at great depth, Int. J. Rock Mech. Min. Sci., 45, 4, 486-494 (2008)
[30] Li, S.; Wang, M., Elastic analysis of stress – displacement field for a lined circular tunnel at great depth due to ground loads and internal pressure, Tunn. Undergr. Space Technol., 23, 6, 609-617 (2008)
[31] Wang, M.; Li, S., A complex variable solution for stress and displacement field around a lined circular tunnel at great depth, Int. J. Numer. Anal. Methods Geomech., 33, 7, 939-951 (2009) · Zbl 1273.74314
[32] Lu, A.; Zhang, N.; Kuang, L., Analytic solutions of stress and displacement for a non-circular tunnel at great depth including support delay, Int. J. Rock Mech. Min. Sci., 70, 69-81 (2014)
[33] Lu, A.; Zhang, N.; Qin, Y., Analytical solutions for the stress of a lined non-circular tunnel under full-slip contact conditions, Int. J. Rock Mech. Min. Sci., 79, 183-192 (2015)
[34] Kargar, A. R.; Rahmannejad, R.; Hajabasi, M. A., A semi-analytical elastic solution for stress field of lined non-circular tunnels at great depth using complex variable method, Int. J. Solids Struct., 51, 6, 1475-1482 (2014)
[35] Kargar, A. R.; Rahmannejad, R.; Hajabasi, M. A., The stress state around lined non-circular hydraulic tunnels below the water table using complex variable method, Int. J. Rock Mech. Min. Sci., 78, 207-216 (2015)
[36] Huo, H.; Bobet, A.; Fernández, G.; Ramírez, J., Analytical solution for deep rectangular structures subjected to far-field shear stresses, Tunn. Undergr. Space Technol., 21, 6, 613-625 (2006)
[37] Zhang, Z.; Huang, M.; Xi, X.; Yang, X., Complex variable solutions for soil and liner deformation due to tunneling in clays, Int. J. Geomech., 18, 7, Article 04018074 pp. (2017)
[38] Zhang, Z.; Zhang, M.; Jiang, Y.; Bai, Q.; Zhao, Q., Analytical prediction for ground movements and liner internal forces induced by shallow tunnels considering non-uniform convergence pattern and ground-liner interaction mechanism, Soils Found., 57, 2, 211-226 (2017)
[39] Lin, L.; Chen, F.; Huang, Z., An analytical solution for sectional estimation of stress and displacement fields around a shallow tunnel, Appl. Math. Model., 69, 181-200 (2019) · Zbl 1461.74053
[40] Song, F.; Wang, H.; Jiang, M., Analytical solutions for lined circular tunnels in viscoelastic rock considering various interface conditions, Appl. Math. Model., 55, 1, 109-130 (2017) · Zbl 1480.74222
[41] Song, F.; Wang, H.; Jiang, M., Analytically-based simplified formulas for circular tunnels with two liners in viscoelastic rock under anisotropic initial stresses, Constr. Build. Mater., 175, 746-767 (2018)
[42] Wang, H.; Li, Y.; Ni, Q.; Utili, S.; Jiang, M.; Liu, F., Analytical solutions for the construction of deeply buried circular tunnels with two liners in rheological rock, Rock Mech. Rock Eng., 46, 6, 1481-1498 (2013)
[43] Wang, H.; Utili, S.; Jiang, M., An analytical approach for the sequential excavation of axisymmetric lined tunnels in viscoelastic rock, Int. J. Rock Mech. Min. Sci., 68, 85-106 (2014)
[44] Fang, Q.; Zhang, D.; Zhou, P.; Wong, L. N.Y., Ground reaction curves for deep circular tunnels considering the effect of ground reinforcement, Int. J. Rock Mech. Min. Sci., 60, 401-412 (2013)
[45] Lu, A.; Xu, G.; Sun, F.; Sun, W., Elasto-plastic analysis of a circular tunnel including the effect of the axial in situ stress, Int. J. Rock Mech. Min. Sci., 47, 1, 50-59 (2010)
[46] Einstein, H. H.; Schwartz, C. W., Simplified analysis for tunnel supports, ASCE J. Geotech. Eng. Div., 104, 4, 499-518 (1979)
[47] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1951), McGraw-Hill: McGraw-Hill New York · Zbl 0045.26402
[48] Brown, E. T.; Hoek, E., Trends in relationships between measured in-situ stresses and depth, Int. J. Rock Mech. Min. Sci., 15, 4, 211-215 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.