×

Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect. (English) Zbl 1481.74301

Summary: In the current investigation, a new formulation for nonlinear vibration behaviors of functionally graded (FG) composite conical nanoshells are constructed using Gurtin-Murdoch elasticity theory based on higher-order shear deformation shell theory (HSDFST) framework. Both W. Voigt [Wiedemann Ann. 38, 573–587 (1888; JFM 21.1039.01)] and A. Reuss [Z. Angew. Math. Mech. 9, 49–58 (1929; JFM 55.1110.02)] homogenization procedures are considered for the estimation of the mechanical characteristics of FG materials. Using generalized differential quadrature method (GDQM) together with Galerkin technique, the surface elastic-based nonlinear frequency-responses of FG composite conical nanoshell are obtained. It has been illustrated that the decrease of material property gradient index or transformation of boundary condition from full simply supported to full clamped, surface stress effect on the nonlinear frequency of a FG composite conical nanoshell reduces. Also, decreasing semi-vertex angle increases the frequency ratio of \(\omega_{NL} / \omega_L\) which reveals higher geometrical nonlinearity. However, it is seen that surface elasticity effect on the nonlinear vibration behavior of FG composite conical nanoshells is not significant.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
Full Text: DOI

References:

[1] Safaei, B.; Naseradinmousavi, P.; Rahmani, A., Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression, J. Mol. Graph. Model., 65, 43-60 (2016)
[2] Safaei, B.; Fattahi, A. M.; Chu, F., Finite element study on elastic transition in platelet reinforced composites, Microsyst. Technol., 24, 2663-2671 (2018)
[3] Behdinan, K.; Moradi-Dastjerdi, R.; Safaei, B.; Qin, Z.; Chu, F.; Hui, D., Graphene and CNT impact on heat transfer response of nanocomposite cylinders, Nanotechnology Review, 9, 41-52 (2020)
[4] Kumar, S.; Murthy Reddy, K. V.V. S.; Kumar, A.; Devi, G. R., Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application, Aerosp. Sci. Technol., 26, 185-191 (2013)
[5] You, J.-H.; Brendel, A.; Nawka, S.; Schubert, T.; Kieback, B., Thermal and mechanical properties of infiltrated W/CuCrZr composite materials for functionally graded heat sink application, J. Nucl. Mater., 438, 1-6 (2013)
[6] Demasi, L.; Ashenafi, Y.; Cavallaro, R.; Santarpia, E., Generalized unified formulation shell element for functionally graded variable-stiffness composite laminates and aeroelastic applications, Compos. Struct., 131, 501-515 (2015)
[7] Shi, Y.; Yao, H.; Gao, Y.-W., A functionally graded composite cantilever to harvest energy from magnetic field, J. Alloys Compd., 693, 989-999 (2017)
[8] Thai, C. H.; Kulasegaram, S.; Tran, L. V.; Nguyen-Xuan, H., Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach, Comput. Struct., 141, 94-112 (2014)
[9] Nguyen, T. N.; Ngo, T. D.; Nguyen-Xuan, H., A novel three-variable shear deformation plate formulation: theory and isogeometric implementation, Comput. Meth. Appl. Mech. Eng., 326, 376-401 (2017) · Zbl 1439.74009
[10] Bharilya, R. K.; Purohit, R., Application of functionally graded nano material (FGNM) laminates for solenoid based actuators, Mater. Today, 5, 20736-20740 (2018)
[11] Qin, Z.; Safaei, B.; Pang, X.; Chu, F., Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions, Results Phys., 15, Article 102752 pp. (2019)
[12] Smith, J. A.; Mele, E.; Rimington, R. P.; Capel, A. J.; Lewis, M. P., Polydimethylsiloxane and poly(ether) ether ketone functionally graded composites for biomedical applications, J. Mech. Behav. Biomed. Mater., 93, 130-142 (2019)
[13] Safaei, B.; Ahmed, N. A.; Fattahi, A. M., Free vibration analysis of polyethylene/CNT plates, The Eu. Phys. J. Plus, 134, 271 (2019)
[14] Ke, L. L.; Yang, J.; Kitipornchai, S.; Bradford, M. A.; Wang, Y. S., Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates, Compos. Part B, 53, 207-217 (2013)
[15] Tadi Beni, Y.; Mehralian, F.; Razavi, H., Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory, Compos. Struct., 120, 65-78 (2015)
[16] Daneshmehr, A.; Rajabpoor, A.; Hadi, A., Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, Int. J. Eng. Sci., 95, 23-35 (2015) · Zbl 1423.74123
[17] Nguyen, N.-T.; Hui, D.; Lee, J.; Nguyen-Xuan, H., An efficient computational approach for size-dependent analysis of functionally graded nanoplates, Comput. Meth. Appl. Mech. Eng., 297, 191-218 (2015) · Zbl 1423.74550
[18] Guo, J.; Chen, J.; Pan, E., Size-dependent behavior of functionally graded anisotropic composite plates, Int. J. Eng. Sci., 106, 110-124 (2016) · Zbl 1423.74544
[19] Awrejcewicz, J.; Krysko, A. V.; Pavlov, S. P.; Zhigalov, M. V.; Krysko, V. A., Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness, Mech. Syst. Sig. Process., 93, 415-430 (2017)
[20] Deng, J.; Liu, Y.; Zhang, Z.; Liu, W., Size-dependent vibration and stability of multi-span viscoelastic functionally graded material nanopipes conveying fluid using a hybrid method, Compos. Struct., 179, 590-600 (2017)
[21] Sahmani, S.; Aghdam, M. M., Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity, Int. J. Mech. Sci., 122, 129-142 (2017)
[22] Sahmani, S.; Aghdam, M. M., Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory, Compos. Struct., 166, 104-113 (2017)
[23] Sahmani, S.; Aghdam, M. M., Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity, Compos. Part B, 114, 404-417 (2017)
[24] Yang, W.; He, D., Free vibration and buckling analyses of a size-dependent axially functionally graded beam incorporating transverse shear deformation, Results Phys., 7, 3251-3263 (2017)
[25] Li, L.; Hu, Y., Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory, Compos. Struct., 172, 242-250 (2017)
[26] Sahmani, S.; Aghdam, M. M., Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell, Phys. Lett. A, 381, 3818-3830 (2017)
[27] Sahmani, S.; Aghdam, M. M., Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory, J. Theor. Biol., 422, 59-71 (2017) · Zbl 1370.92024
[28] Sahmani, S.; Aghdam, M. M., Nonlinear vibrations of pre-and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory, J. Biomech., 65, 49-60 (2017)
[29] Ghayesh, M. H.; Farokhi, H.; Gholipour, A.; Tavallaeinejad, M., Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams, Int. J. Eng. Sci., 120, 51-62 (2017) · Zbl 1423.74393
[30] Simsek, M.; Aydin, M., Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress theory, Compos. Struct., 160, 408-421 (2017)
[31] Nguyen, H. X.; Nguyen, T. N.; Abdel-Wahab, M.; Bordas, S. P.A., A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory, Comput. Meth. Appl. Mech. Eng., 313, 904-940 (2017) · Zbl 1439.74453
[32] Sahmani, S.; Aghdam, M. M., Boundary layer modeling of nonlinear axial buckling behavior of functionally graded cylindrical nanoshells based on the surface elasticity theory, Iranian J. Sci. Technol. Trans. Mech. Eng., 42, 229-245 (2018)
[33] Attia, M. A.; Abdel Rahman, A. A., On vibrations of functionally graded viscoelastic nanobeams with surface effects, Int. J. Eng. Sci., 127, 1-32 (2018) · Zbl 1423.74383
[34] Sahmani, S.; Fattahi, A. M., Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory, Appl. Math. Mech., 39, 561-580 (2018) · Zbl 1390.74152
[35] Trinh, L. C.; Vo, T. P.; Thai, H.-T.; Nguyen, T.-K., Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions, Compos. Part B, 134, 225-245 (2018)
[36] Shafiei, N.; She, G.-L., On vibration of functionally graded nano-tubes in the thermal environment, Int. J. Eng. Sci., 133, 84-98 (2018) · Zbl 1423.74407
[37] Sahmani, S.; Aghdam, M. M., Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory, The Eu. Phys. J. Plus, 132, 490 (2017)
[38] Sahmani, S.; Aghdam, M. M.; Rabczuk, T., Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs, Compos. Struct., 198, 51-62 (2018)
[39] Sahmani, S.; Aghdam, M. M.; Rabczuk, T., A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets, Mater. Res. Express, 5, Article 045048 pp. (2018)
[40] Sahmani, S.; Aghdam, M. M.; Rabczuk, T., Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory, Compos. Struct., 186, 68-78 (2018)
[41] Fattahi, A. M.; Safaei, B.; Moaddab, E., The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates, Steel and Compos. Struct., 32, 281-292 (2019)
[42] Arefi, M.; Kiani, M.; Rabczuk, T., Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets, Compos. Part B, 168, 320-333 (2019)
[43] Safaei, B., The effect of embedding a porous core on the free vibration behavior of laminated composite plates, Steel Compos. Struct., 35, 659-670 (2020)
[44] Zheng, S.; Chen, D.; Wang, H., Size dependent nonlinear free vibration of axially functionally graded tapered microbeams using finite element method, Thin-Walled Struct., 139, 46-52 (2019)
[45] Rajasekaran, S.; Bakhshi Khaniki, H., Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass, Appl. Math. Modell., 72, 129-154 (2019) · Zbl 1481.74299
[46] Sahmani, S.; Safaei, B., Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects, Thin-Walled Struct., 140, 342-356 (2019)
[47] Sahmani, S.; Safaei, B., Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation, Thin-Walled Struct., 143, Article 106226 pp. (2019)
[48] Sahmani, S.; Safaei, B., Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams, Appl. Math. Modell., 82, 336-358 (2020) · Zbl 1481.74640
[49] Thai, C. H.; Tran, T. D.; Phung-Van, P., A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates, Eng. Anal. Boundary Elem., 115, 52-63 (2020) · Zbl 1464.74075
[50] Yuan, Y.; Zhao, K.; Zhao, Y.; Sahmani, S.; Safaei, B., Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells, Mech. Mater., 148, Article 103507 pp. (2020)
[51] Yuan, Y.; Zhao, K.; Han, Y.; Sahmani, S.; Safaei, B., Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model, Thin-Walled Struct., 154, Article 106857 pp. (2020)
[52] Zhu, C.; Fang, X.; Liu, J., A new approach for smart control of size-dependent nonlinear free vibration of viscoelastic orthotropic piezoelectric doubly-curved nanoshells, Appl. Math. Modell., 77, 137-168 (2020) · Zbl 1448.74073
[53] Altenbach, H.; Eremeyev, V. A., On the shell theory on the nanoscale with surface stresses, Int. J. Eng. Sci., 49, 1294-1301 (2011) · Zbl 1423.74561
[54] Altenbach, H.; Eremeyev, V. A.; Morozov, N. F., Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale, Int. J. Eng. Sci., 59, 83-89 (2012) · Zbl 1423.74805
[55] Sahmani, S.; Bahrami, M.; Ansari, R., Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams, Compos. Struct., 116, 552-561 (2014)
[56] Sahmani, S.; Aghdam, M. M., Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments, Arch. Civil Mech. Eng., 17, 623-638 (2017)
[57] Foroutan, S.; Haghshenas, A.; Hashemian, M.; Eftekhari, S. A.; Toghraie, D., Spatial buckling analysis of current-carrying nanowires in the presence of a longitudinal magnetic field accounting for both surface and nonlocal effects, Physica E, 97, 191-205 (2018)
[58] Kamali, M.; Shamsi, M.; Saidi, A. R., Surface effect on buckling of microtubules in living cells using first-order shear deformation shell theory and standard linear solid model, Mech. Res. Commun., 92, 111-117 (2018)
[59] Sun, J.; Wang, Z.; Zhou, Z.; Xu, X.; Lim, C. W., Surface effects on the buckling behaviors of piezoelectric cylindrical nanoshells using nonlocal continuum model, Appl. Math. Modell., 59, 341-356 (2018) · Zbl 1480.74092
[60] Fang, X.-Q.; Zhu, C.-S.; Liu, J.-X.; Liu, X.-L., Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures, Physica B, 529, 41-56 (2018)
[61] Wang, K. F.; Wang, B. L.; Xu, M. H.; Yu, A. B., Influences of surface and interface energies on the nonlinear vibration of laminated nanoscale plates, Compos. Struct., 183, 423-433 (2018)
[62] Xiao, Q.-X.; Li, X.-F., Flutter and divergence instability of rectangular plates under nonconservative forces considering surface elasticity, Int. J. Mech. Sci., 149, 254-261 (2018)
[63] Ghorbani, K.; Mohammadi, K.; Rajabpour, A.; Ghadiri, M., Surface and size-dependent effects on the free vibration analysis of cylindrical shell based on Gurtin-Murdoch and nonlocal strain gradient theories, J. Phys. Chem. Solids, 129, 140-150 (2019)
[64] Shiva, K.; Raghu, P.; Rajagopal, A.; Reddy, J. N., Nonlocal buckling analysis of laminated composite plates considering surface stress effects, Compos. Struct., 226, Article 111216 pp. (2019)
[65] Hashemian, M.; Foroutan, S.; Toghraie, D., Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects, Mech. Mater., 139, Article 103209 pp. (2019)
[66] Sarafraz, A.; Sahmani, S.; Aghdam, M. M., Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects, Appl. Math. Modell., 66, 195-226 (2019) · Zbl 1481.74465
[67] Hashemi Kachapi, S. H.; Dardel, M.; Daniali, H. M.; Fathi, A., Pull-in instability and nonlinear vibration analysis of electrostatically piezoelectric nanoresonator with surface/interface effects, Thin-Walled Struct., 143, Article 106210 pp. (2019)
[68] Liu, S.; Yu, T.; Lich, L. V.; Yin, S.; Bui, T. Q., Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis, Comput. Struct., 212, 173-187 (2019)
[69] Sahmani, S.; Fattahi, A. M.; Ahmed, N. A., Radial postbuckling of nanoscaled shells embedded in elastic foundations based on Ru’s surface stress elasticity theory, Mech. Based Des. Struct. Mach., 47, 787-806 (2019)
[70] Arpanahi, R. A.; Hosseini-Hashemi, S.; Rahmanian, S.; Hosseini Hashemi, S.; Ahmadi-Savadkoohi, A., Nonlocal surface energy effect on free vibration behavior of nanoplates submerged in incompressible fluid, Thin-Walled Struct., 143, Article 106212 pp. (2019)
[71] Sahmani, S.; Fattahi, A. M.; Ahmed, N. A., Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions, Int. J. Mech. Sci., 164, Article 105203 pp. (2020)
[72] Yi, H.; Sahmani, S.; Safaei, B., On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions, Arch. Civil Mech. Eng., 20, 1-23 (2020)
[73] Sarafraz, A.; Sahmani, S.; Aghdam, M. M., Nonlinear primary resonance analysis of nanoshells including vibrational mode interactions based on the surface elasticity theory, Appl. Math. Mech., 41, 233-260 (2020) · Zbl 1462.74077
[74] Li, Q.; Xie, B.; Sahmani, S.; Safaei, B., Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction, J. Br. Soc. Mech. Sci. Eng., 42, 237 (2020)
[75] Gao, W.; Qin, Z.; Chu, F., Wave propagation in functionally graded porous plates reinforced with graphene platelets, Aerosp. Sci. Technol., 102, Article 105860 pp. (2020)
[76] Malikan, M.; Eremeyev, V. A., Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method, Mater. Res. Express, 7, Article 025005 pp. (2020)
[77] Fan, F.; Lei, B.; Sahmani, S.; Safaei, B., On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates, Thin-Walled Struct., 154, Article 106841 pp. (2020)
[78] Wang, X.; Zhou, G.; Safaei, B.; Sahmani, S., Boundary layer modeling of surface residual tension in postbuckling behavior of axially loaded silicon panels at nanoscale embedded in elastic foundations, Mech. Based Des. Struct. Mach. (2020), doi.org/
[79] Reddy, J. N., Mechanics of laminated composite plates and shells, theory and analysis, CRC Press LLC (2004), Boca Raton · Zbl 1075.74001
[80] Gurtin, M. E.; Murdoch, A. I., A continuum theory of elastic material surface, Arch. Ration. Mech. Anal., 57, 291-323 (1975) · Zbl 0326.73001
[81] Gurtin, M. E.; Murdoch, A. I., Surface stress in solids, Int. J. Solids Struct., 14, 431-440 (1978) · Zbl 0377.73001
[82] Reuss, A., Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle, ZAMM-J. Appl. Math. Mech., 9, 49-58 (1929) · JFM 55.1110.02
[83] Voigt, W., Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper, Ann. Phys. Lpz., 274, 573-587 (1889) · JFM 21.1039.01
[84] Faghih Shojaei, M.; Ansari, R.; Mohammadi, V.; Rouhi, H., Nonlinear forced vibration analysis of postbuckled beams, Arch. Appl. Mech., 84, 421-440 (2014) · Zbl 1367.74019
[85] Ansari, R.; Mohammadi, V.; Faghih Shojaei, M.; Gholami, R.; Sahmani, S., On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory, Compos. Part B, 60, 158-166 (2014)
[86] Sahmani, S.; Bahrami, M.; Ansari, R., Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory, Compos. Struct., 110, 219-230 (2014)
[87] Sahmani, S.; Bahrami, M.; Aghdam, M. M.; Ansari, R., Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams, Compos. Struct., 118, 149-158 (2014)
[88] Sahmani, S.; Aghdam, M. M.; Bahrami, M., On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects, Compos. Struct., 121, 377-385 (2015)
[89] Keller, B. H., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory (1977), University of Wisconsin: University of Wisconsin MadisonNew York · Zbl 0581.65043
[90] Miller, R. E.; Shenoy, V. B., Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11, 139-147 (2000)
[91] Li, F.-M.; Kishimoto, K.; Huang, W.-H., The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method, Mech. Res. Commun., 36, 595-602 (2009) · Zbl 1258.74106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.