×

Semi-analytical solution of three-dimensional thermoviscoelastic behaviors for a fiber metal laminated plate subjected to laser shock processing. (English) Zbl 1481.74227

Summary: The three-dimensional transient temperature distribution for a fiber metal laminated (FML) rectangular plate during laser shock processing has been obtained previously based on the separate variable method (SVM). Then the three-dimensional thermoviscoelastic governing equations are formulated based on Hamilton variational principle subsequently. The obtained thermoviscoelastic nonlinear integral-partial differential equations are solved by applying the Galerkin method and Newmark method in space and time domain, respectively, which differs with other publications. Meanwhile, Newton-Cotes trapezoidal formula is adopted to conduct the convolution operator for the transforming algebraic equations. The research aims at giving the semi-analytical solution of three-dimensional thermoviscoelastic behaviors for the FML structure subjected to laser shock processing, besides understanding the influences of temperature, boundary condition, laser moving velocity as well as number of fiber species and FML layers on the dynamic characteristic (such as deflection, vibration frequency and stress components) of the FML structure. Comparing with the deflection, the in-plane displacement is more sensitive to the temperature parameter, and normal stress caused by temperature is far greater than that caused by deformation. Young’s modulus \(E_2\) for \(S_2\)-glass fiber epoxy is less than that of glass polymer about 61.7%; shear stress \(\sigma_{xy}\) is only associated with shear modulus \(G_{xy}^l(t)\); Shear stress \(\sigma_{xz}\) is only associated with rotation angle \(\phi\) and deflection, while normal stress is associated with in-plane displacement and temperature increment.

MSC:

74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Reyes, G. V.; Cantwell, W. J., The mechanical properties of fiber-metal laminates based on glass fiber reinforced polypropylene, Compos. Sci. Technol., 60, 1085-1094 (2000)
[2] Khalili, S. M.R.; Mittal, R. K.; Kalibar, S. G., A study of the mechanical properties ofsteel/aluminum/GRP laminates, Mater. Sci. Eng. A Struct., 412, 137-140 (2005)
[3] Peride, N.; Carabineanu, A.; Craciun, E. M., Mathematical modelling of the interface crack propagation in a pre-stressed fiber reinforced elastic composite, Comput. Mater. Sci., 45, 3, 684-692 (2009)
[4] Shen, H. S.; Zhu, Z. H., Compressive and thermal postbuckling behaviors of laminated plates with piezoelectric fiber reinforced composite actuators, Appl. Math. Model., 35, 1829-1845 (2011) · Zbl 1217.74051
[5] da Costa, A. A.; da Silva, D. F.N. R.; Travessa, D. N.; Botelho, E. C., The effect of thermal cycles on the mechanical properties of fiber-metal laminates, Mater. Des., 42, 434-440 (2012)
[6] Hosseini-Toudeshky, H.; Sadighi, M.; Vojdani, A., Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches, Compos. Struct., 100, 154-162 (2013)
[7] Nawab, Y.; Jacquemin, F.; Casari, P.; Boyard, N.; Borjon-Piron, Y.; Sobotka, V., Study of variation of thermal expansion coefficients in carbon/epoxy laminated composite plates, Compos. B Eng., 50, 144-149 (2013)
[8] Mlyniec, A.; Korta, J.; Kudelski, R.; Uhl, T., The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites, Compos. Struct., 118, 208-216 (2014)
[9] Fu, Y. M.; Zhong, J.; Chen, Y., Thermal postbuckling analysis of fiber-metal laminated plates including interfacial damage, Compos. B Eng., 56, 358-364 (2014)
[10] Samadpour, M.; Sadighi, M.; Shakeri, M.; Zamani, H. A., Vibration analysis of thermally buckled SMA hybrid composite sandwich plate, Compos. Struct., 119, 251-263 (2015)
[11] Fan, Y.; Wang, H., Nonlinear bending and postbuckling analysis of matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers in thermal environments, Compos. B Eng., 86, 1-16 (2016)
[12] Fan, Y.; Wang, H., Thermal postbuckling and vibration of postbuckled matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers on elastic foundation, Compos. Struct., 157, 386-397 (2016)
[13] Kabir, M. Z.; Tehrani, B. T., Closed-form solution for thermal, mechanical, and thermo-mechanical buckling and post-buckling of SMA composite plates, Compos. Struct., 168, 535-548 (2017)
[14] Viana, S. T.; Scariot, V. K.; Provensi, A.; Barra, G. M.O.; Barbosa, J. R., Fabrication and thermal analysis of epoxy resin-carbon fiber fabric composite plate-coil heat exchangers, Appl. Therm. Eng., 127, 1451-1460 (2017)
[15] Manickam, G.; Bharath, A.; Das, A. N.; Chandra, A.; Barua, P., Thermal buckling behaviour of variable stiffness laminated composite plates, Mater. Today Commun., 16, 142-151 (2018)
[16] Haldar, A.; Reinoso, J.; Jansen, E.; Rolfes, R., Thermally induced multistable configurations of variable stiffness composite plates: Semi-analytical and finite element investigation, Compos. Struct., 183, 161-175 (2018)
[17] Gasiński, L.; Ochal, A., Dynamic thermoviscoelastic problem with friction and damage, Nonlinear Anal. Real, 21, 63-75 (2015) · Zbl 1334.74062
[18] Gasiński, L.; Ochal, A.; Shillor, M., Quasistatic thermoviscoelastic problem with normal compliance, multivalued friction and wear diffusion, Nonlinear Anal. Real, 27, 183-202 (2016) · Zbl 1331.74042
[19] Ahn, J.; Clark, N., Mathematical and numerical approaches to a one-dimensional dynamic thermoviscoelastic contact problem, Nonlinear Anal. Real, 22, 437-451 (2015) · Zbl 1326.74096
[20] Berti, A.; Copetti, M. I.M.; Fernández, J. R.; Naso, M. G., A dynamic thermoviscoelastic contact problem with the second sound effect, J. Math. Anal. Appl., 421, 1163-1195 (2015) · Zbl 1408.74044
[21] Ezzat, M. A.; El-Karamany, A. S.; El-Bary, A. A., Thermo-viscoelastic materials with fractional relaxation operators, Appl. Math. Model., 39, 7499-7512 (2015) · Zbl 1443.74045
[22] Copetti, M. I.M.; Aouadi, M., Analysis of a contact problem in thermoviscoelasticity under the Green-Lindsay model, Appl. Numer. Math., 91, 60-74 (2015) · Zbl 1308.74144
[23] Copetti, M. I.M.; Aouadi, M., A quasi-static contact problem in thermoviscoelastic diffusion theory, Appl. Numer. Math., 109, 157-183 (2016) · Zbl 06626849
[24] Aouadi, M.; Campo, M.; Copetti, M. I.M.; Fernández, J. R., Analysis of a multidimensional thermoviscoelastic contact problem under the Green-Lindsay theory, J. Comput. Appl. Math., 345, 224-246 (2019) · Zbl 1459.74136
[25] Norouzi, H.; Alibeigloo, A., Three dimensional thermoviscoelastic analysis of a simply supported FGM cylindrical panel, Compos. Struct., 148, 181-190 (2016)
[26] Bary, B.; Bourcier, C.; Helfer, T., Analytical and 3D numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces, Adv. Eng. Softw., 112, 16-30 (2017)
[27] Bartosz, K.; Danan, D.; Szafraniec, P., Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law, Comput. Math. Appl., 73, 727-746 (2017) · Zbl 1369.74066
[28] Madenci, E.; Oterkus, S., Ordinary state-based peridynamics for thermoviscoelastic deformation, Eng. Fract. Mech., 175, 31-45 (2017)
[29] Deswal, S.; Kalkal, K. K.; Yadav, R., Response of fractional ordered micropolar thermoviscoelastic half-space with diffusion due to ramp type mechanical load, Appl. Math. Model., 49, 144-161 (2017) · Zbl 1480.74013
[30] Hassan, M.; Marin, M.; Ellahi, R.; Alamri, S. Z., Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids, Heat Transf. Res., 49, 18, 1837-1848 (2018)
[31] Fang, C. Q.; Leng, J. S.; Sun, H. Y.; Gu, J. P., A multi-branch thermoviscoelastic model based on fractional derivatives for free recovery behaviors of shape memory polymers, Mech. Mater., 120, 34-42 (2018)
[32] Zeng, H.; Leng, J. S.; Gu, J. P.; Sun, H. Y., A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers, Mech. Mater., 124, 18-25 (2018)
[33] Jiang, H. J.; Liang, L. H.; Xiao, Y. L.; Chen, J.; Xu, Y. J.; Wang, X. G., Three-dimensional transient thermodynamic analysis of laser surface treatment for a fiber laminated plate with a coating layer, Int. J. Heat Mass Transf., 118, 671-685 (2018)
[34] Jiang, H. J.; Dai, H. L., Effect of laser processing on three dimensional thermodynamic analysis for HSLA rectangular steel plates, Int. J. Heat Mass Transf., 82, 98-108 (2015)
[35] Xu, Z. L., Elasticity Mechanics (2006), Higher Education Press: Higher Education Press Beijing
[36] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells (1997), CRC Press: CRC Press USA · Zbl 0899.73002
[37] Sun, J.; Kari, L.; Arteaga, I. L., A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the Hamilton’s principle, J. Sound Vib., 332, 1355-1371 (2013)
[38] Dai, H. L.; Yan, X.; Jiang, H. J., Thermoviscoelastic behavior in a circular HSLA steel plate, J. Therm. Stresses, 36, 1112-1130 (2013)
[39] Dai, H. L.; Zheng, Z. Q.; Xu, W. L.; Liu, H. B.; Luo, A. H., Thermoviscoelastic dynamic response for a rectangular steel plate under laser processing, Int. J. Heat Mass Transf., 105, 24-33 (2017)
[40] Zhang, D. G.; Zhou, Y. H., A theoretical analysis of FGM thin plates based on physical neutral surface, Comput. Mater. Sci., 44, 2, 716-720 (2008)
[41] Xiao, Y. G.; Fu, Y. M.; Zha, X. D., Nonlinear vibration for moderate thickness rectangular cracked plates including coupled effect of elastic foundation, Appl. Math. Mech. Engl., 26, 963-972 (2005) · Zbl 1144.74328
[42] Fu, Y. M.; Hu, S. M., Nonlinear transient response of fibre metal laminated shallow sphericalshells with interfacial damage under unsteady temperature fields, Compos. Struct., 106, 57-64 (2013)
[43] Fu, Y. M.; Zhong, J.; Chen, Y., Thermal postbuckling analysis of fiber-metal laminated plates including interfacial damage, Compos. B Eng., 56, 358-364 (2014)
[44] Fu, Y. M.; Li, P. E.; Zheng, Y. F., Analysis of nonlinear dynamic response for viscoelastic composite plate with transverse matrix cracks, Acta Mech. Solida Sin., 17, 3, 230-238 (2004)
[45] Jiang, H. J.; Wang, X. G.; Liang, L. H.; Dai, H. L., Three-dimensional steady thermodynamic analysis for a double-layer plate with a local heat source and harmonic load, Appl. Therm. Eng., 106, 161-173 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.