×

Analysis of a nonlinear singularly perturbed Volterra integro-differential equation. (English) Zbl 1481.65271

Summary: We consider a nonlinear singularly perturbed Volterra integro-differential equation. The problem is discretized by an implicit finite difference scheme on an arbitrary non-uniform mesh. The scheme comprises of an implicit difference operator for the derivative term and an appropriate quadrature rule for the integral term. We establish both a priori and a posteriori error estimates for the scheme that hold true uniformly in the small perturbation parameter. Numerical experiments are performed and results are reported for validation of the theoretical error estimates.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45D05 Volterra integral equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
Full Text: DOI

References:

[1] Bakhvalov, N. S., On the optimization of the methods for solving boundary value problems in the presence of a boundary layer, Zh. Vychisl. Mat. Mat. Fiz., 9, 4, 841-859 (1969) · Zbl 0208.19103
[2] Vulanović, R., Non-equidistant generalizations of the gushchin-shchennikov scheme, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech., 67, 12, 625-632 (1987) · Zbl 0636.65077
[3] Vulanović, R., A priori meshes for singularly perturbed quasilinear two-point boundary value problems, IMA J. Numer. Anal., 21, 1, 349-366 (2001) · Zbl 0989.65081
[4] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, Vol. 24 (2008), Springer Science & Business Media · Zbl 1155.65087
[5] Miller, J. J.H.; O’Riordan, E.; Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems (1996), World Scientific Co.: World Scientific Co. Singapore · Zbl 0915.65097
[6] Clavero, C.; Vigo-Aguiar, J., Numerical approximation of 2D time dependent singularly perturbed convection-diffusion problems with attractive or repulsive turning points, Appl. Math. Comput., 317, 223-233 (2018) · Zbl 1427.65153
[7] Ramos, H.; Vigo-Aguiar, J.; Natesan, S.; Rubio, R. G.; Queiruga, M. A., Numerical solution of nonlinear singularly perturbed problems on nonuniform meshes by using a non-standard algorithm, J. Math. Chem., 48, 38-54 (2010) · Zbl 1304.65180
[8] Natesan, S.; Jayakumar, J.; Vigo-Aguiar, J., Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math., 158, 1, 121-134 (2003) · Zbl 1033.65061
[9] Kumar, K.; Chakravarthy, P. P.; Vigo-Aguiar, J., Numerical solution of time-fractional singularly perturbed convection-diffusion problems with a delay in time, Math. Methods Appl. Sci. (2020) · Zbl 1473.65259
[10] Kumar, S., Layer-adapted methods for quasilinear singularly perturbed delay differential problems, Appl. Math. Comput., 233, 214-221 (2014) · Zbl 1337.65096
[11] Kumar, S.; Kumar, M., A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems, Numer. Algorithms, 76, 2, 349-360 (2017) · Zbl 1382.65211
[12] Kumar, S.; Kumar, M., Analysis of some numerical methods on layer adapted meshes for singularly perturbed quasilinear systems, Numer. Algorithms, 71, 1, 139-150 (2016) · Zbl 1335.65062
[13] Kumar, S.; Kumar, M., Parameter-robust numerical method for a system of singularly perturbed initial value problems, Numer. Algorithms, 59, 2, 185-195 (2012) · Zbl 1245.65101
[14] Rao, S. C.S.; Kumar, S., Second order global uniformly convergent numerical method for a coupled system of singularly perturbed initial value problems, Appl. Math. Comput., 219, 8, 3740-3753 (2012) · Zbl 1311.65101
[15] Das, P.; Vigo-Aguiar, J., Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter, J. Comput. Appl. Math., 354, 533-544 (2019) · Zbl 1415.65166
[16] Shakti, D.; Mohapatra, J.; Das, P.; Vigo-Aguiar, J., A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms, J. Comput. Appl. Math., Article 113167 pp. (2020) · Zbl 1503.65184
[17] Kopteva, N.; Stynes, M., A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 1446-1467 (2001) · Zbl 1012.65076
[18] Das, P., Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems, J. Comput. Appl. Math., 290, 16-25 (2015) · Zbl 1321.65126
[19] Huang, J.; Cen, Z.; Xu, A.; Liu, L.-B., A posteriori error estimation for a singularly perturbed Volterra integro-differential equation, Numer. Algorithms, 83, 2, 549-563 (2020) · Zbl 1437.65239
[20] Kumar, S.; Kumar, S.; Sumit, A., High-order convergent methods for singularly perturbed quasilinear problems with integral boundary conditions, Math. Methods Appl. Sci. (2020)
[21] Angell, J. S.; Olmstead, W. E., Singularly perturbed Volterra integral equations II, SIAM J. Appl. Math., 47, 6, 1150-1162 (1987) · Zbl 0635.45023
[22] Hoppensteadt, F., An algorithm for approximate solutions to weakly filtered synchronous control systems and nonlinear renewal processes, SIAM J. Appl. Math., 43, 4, 834-843 (1983) · Zbl 0555.93026
[23] Lodge, A. S.; McLeod, J. B.; Nohel, J. A., A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology, Proc. R. Soc. Edinburgh Sect. A, 80, 1-2, 99-137 (1978) · Zbl 0395.45012
[24] Jordan, G. S., A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type, Proc. R. Soc. Edinburgh Sect. A, 80, 3-4, 235-247 (1978) · Zbl 0394.45003
[25] Iragi, B. C.; Munyakazi, J. B., A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 97, 4, 759-771 (2020) · Zbl 1480.65377
[26] Salama, A.; Evans, D. J., Fourth order scheme of exponential type for singularly perturbed Volterra integro-differential equations, Int. J. Comput. Math., 77, 1, 153-164 (2001) · Zbl 0984.65145
[27] Horvat, V.; Rogina, M., Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations, J. Comput. Appl. Math., 140, 1-2, 381-402 (2002) · Zbl 0998.65133
[28] Yapman, Ö.; Amiraliyev, G. M., A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 1-10 (2019)
[29] Liang, Y.; Liu, L.; Cen, Z., A posteriori error estimation in maximum norm for a system of singularly perturbed Volterra integro-differential equations, Comput. Appl. Math. (2020) · Zbl 1463.65177
[30] Kauthen, J.-P., Implicit Runge-Kutta methods for some integrodifferential-algebraic equations, Appl. Numer. Math., 13, 1-3, 125-134 (1993) · Zbl 0787.65106
[31] Şevgin, S., Numerical solution of a singularly perturbed Volterra integro-differential equation, Adv. Difference Equ., 2014, 1, 171 (2014) · Zbl 1343.45009
[32] Willett, D.; Wong, J., On the discrete analogues of some generalizations of gronwall’s inequality, Monatsh. Math., 69, 4, 362-367 (1965) · Zbl 0145.06003
[33] Linß, T., Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems (2009), Springer · Zbl 1056.65076
[34] Ascher, U. M.; Mattheij, R. M.; Russell, R. D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Vol. 13 (1994), SIAM
[35] de Boor, C., Good approximation by splines with variable knots, (Spline Functions and Approximation Theory (1973), Proceedings of the symposium held at the University of Alberta, Birkhauser: Proceedings of the symposium held at the University of Alberta, Birkhauser Edmonton, Basel) · Zbl 0255.41007
[36] Kumar, S.; Sumit, R. M.; Ramos, H., Parameter-uniform approximation on equidistributed meshes for singularly perturbed parabolic reaction-diffusion problems with robin boundary conditions, Appl. Math. Comput., 392, Article 125677 pp. (2021) · Zbl 1508.65106
[37] Kumar, S.; Sumit, R. M.; Vigo-Aguiar, J., A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection-diffusion problems, J. Comput. Appl. Math., Article 113273 pp. (2020) · Zbl 1524.65360
[38] Kopteva, N.; Stynes, M., A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 4, 1446-1467 (2001) · Zbl 1012.65076
[39] Xu, X.; Huang, W.; Russell, R. D.; Williams, J. F., Convergence of de Boor’s algorithm for the generation of equidistributing meshes, IMA J. Numer. Anal., 31, 2, 580-596 (2010) · Zbl 1228.65027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.