×

A new block-diagonal preconditioner for a class of \(3\times 3\) block saddle point problems. (English) Zbl 1481.65048

Summary: We study the performance of a new block preconditioner for a class of \(3\times 3\) block saddle point problems which arise from finite-element methods for solving time-dependent Maxwell equations and some other practical problems. We also estimate the lower and upper bounds of eigenvalues of the preconditioned matrix. Finally, we examine our new preconditioner to accelerate the convergence speed of the GMRES method which shows the effectiveness of the preconditioner.

MSC:

65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices

References:

[1] Assous, F.; Degond, P.; Heintze, E.; Raviart, PA; Segre, J., On a finite-element method for solving the three-dimentional Maxwell equations, J. Comput. Phys., 109, 222-237 (1993) · Zbl 0795.65087 · doi:10.1006/jcph.1993.1214
[2] Bai, Z-Z; Ng, MK; Wang, Z-Q, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31, 410-433 (2009) · Zbl 1195.65033 · doi:10.1137/080720243
[3] Beik, FPA; Benzi, M., Iterative methods for double saddle point systems, SIAM J. Matrix Anal. Appl., 39, 902-921 (2018) · Zbl 1391.65062 · doi:10.1137/17M1121226
[4] Beik, FPA; Benzi, M., Block preconditioners for saddle point systems arising from liquid crystal directors modeling, Calcolo, 55, Article 29 (2018) · Zbl 1416.65079 · doi:10.1007/s10092-018-0271-6
[5] Benzi, M.; Golub, GH, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26, 20-41 (2004) · Zbl 1082.65034 · doi:10.1137/S0895479802417106
[6] Bergamaschi, L., On eigenvalue distribution of constraint-preconditioned symmetric saddle point matrices, Numer. Linear Algebra Appl., 19, 754-772 (2012) · Zbl 1274.65084 · doi:10.1002/nla.806
[7] Chen, Z-M; Du, Q.; Zou, J., Finite element methods with matching and nonmatching meshes of Maxwell equation with discontinues coefficients, SIAM J. Numer. Anal., 37, 1542-1570 (2000) · Zbl 0964.78017 · doi:10.1137/S0036142998349977
[8] Cao, Y., Shift-splitting preconditioners for a class of block three-by-three saddle point problems, Appl. Math. Lett., 96, 40-46 (2019) · Zbl 1524.65120 · doi:10.1016/j.aml.2019.04.006
[9] Cao, ZH, Positive stable block triangular preconditioners for symmetric saddle point problems, Appl. Numer. Math., 57, 899-910 (2007) · Zbl 1118.65021 · doi:10.1016/j.apnum.2006.08.001
[10] Cao, Y.; Du, J.; Niu, Q., Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272, 239-250 (2014) · Zbl 1303.65012 · doi:10.1016/j.cam.2014.05.017
[11] Chen, C.; Ma, C-F, A generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 43, 49-55 (2015) · Zbl 1315.65030 · doi:10.1016/j.aml.2014.12.001
[12] Ciarlet, P.; Zou, J., Finite element convergence for Darwin model to Maxwell’s equations, RAIRO Math. Model. Numer. Anal., 31, 213-249 (1997) · Zbl 0887.65121 · doi:10.1051/m2an/1997310202131
[13] Elman, HC; Silvester, DJ; Wathen, AJ, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 665-688 (2002) · Zbl 1143.76531 · doi:10.1007/s002110100300
[14] Han, D.; Yuan, X., Local linear convergence of the alternating direction method of multipliers for quadratic programs, SIAM J. Numer. Anal., 51, 3446-3457 (2013) · Zbl 1285.90033 · doi:10.1137/120886753
[15] Huang, N., Variable parameter Uzawa method for solving a class of block three-by-three saddle point problems, Numer. Algorithms, 85, 1233-1254 (2020) · Zbl 1455.65049 · doi:10.1007/s11075-019-00863-y
[16] Huang, N.; Dai, YH; Hu, Q., Uzawa methods for a class of block three-by-three saddle point problems, Numer. Linear Algebra Appl., 26, e2265 (2019) · Zbl 1463.65046
[17] Huang, N.; Ma, C-F, Spectral analysis of the preconditioned system for the \(3\times 3\) block saddle point problem, Numer. Algorithms, 81, 421-444 (2019) · Zbl 1454.65019 · doi:10.1007/s11075-018-0555-6
[18] Horn, RA; Johnson, CR, Matrix Analysis (2012), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9781139020411
[19] Jiang, M-Q; Cao, Y.; Yao, L-Q, On parameterized block triangular preconditioners for generalized saddle point problems, Appl. Math. Comput., 216, 1777-1789 (2010) · Zbl 1194.65049
[20] Hu, KB; Xu, JC, Structure-preserving finite element methods for stationary MHD models, Math. Comput., 88, 553-581 (2019) · Zbl 1405.65151 · doi:10.1090/mcom/3341
[21] Madern, M.: Geometry of Polynomials. Math. Surveys Monger., vol. 3, AMS, Providence (1966) · Zbl 0162.37101
[22] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 461-469 (1993) · Zbl 0780.65022 · doi:10.1137/0914028
[23] Saad, Y., Iterative Methods for Sparse Linear Systems (1995), New York: PWS, New York · Zbl 1002.65042
[24] Salkuyeh, DK; Abdolmaleki, M.; Karimi, S., On a splitting preconditioner for saddle point problems, J. Appl. Math. Inform., 36, 459-474 (2018) · Zbl 1451.65034
[25] Sendov, Bl., Andreev, A., Kjurkchiev, N.: Numerical solution of polynomial equations. In: Ciarlet, P.G., Lions, J. L. (eds.) Handbook of Numerical Analysis, vol. III: Solution of Equations in \({\mathbb{R}^n} \) (Part2). Elsevier, Amsterdam (1994) · Zbl 0925.65086
[26] Xie, X.; Li, H-B, A note on preconditioning for the \(3 \times 3\) block saddle point problem, J. Comput. Math. Appl., 79, 3289-3296 (2020) · Zbl 1452.65054 · doi:10.1016/j.camwa.2020.01.022
[27] Yuan, J-Y, Numerical methods for generalized least squares problems, J. Compute. Appl. Math., 66, 571-584 (1996) · Zbl 0858.65043 · doi:10.1016/0377-0427(95)00167-0
[28] Zhang, J-L; Gu, C-Q; Zhang, K., A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle point problems, Appl. Math Comput., 249, 468-479 (2014) · Zbl 1339.65045
[29] Zhang, N-M; Shen, P., Constraint preconditioners for solving singular saddle point problems, J. Comput. Appl. Math., 238, 116-125 (2013) · Zbl 1257.65017 · doi:10.1016/j.cam.2012.08.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.