×

Calculation of dimensions of curves generated by subdivision schemes. (English) Zbl 1481.65031

Summary: Little attention has been paid to estimating dimensions of the curves generated by the subdivision algorithms. A unified method is proposed to estimate the dimension of curves generated by the arbitrary, stationary, linear subdivision schemes with given control points, based on a theorem about the Hausdorff dimension of iterated function systems. Several examples are given to demonstrate the implementation of the method, including the Koch curve, the uniform quadratic B-spline curve and the curves generated by the four-point binary and ternary interpolatory subdivision schemes with a free parameter. Compared with the method of the traditional iterated function system collage theorem, our algorithm overcomes the disadvantage of choosing points and collage, avoiding a large amount of calculation to find the contractive affine transformations and the contraction constants. Furthermore, we can calculate not only the dimension of the special curves with the geometric structure of self-similarity, but also the dimension of the curves generated by more general subdivision algorithms.

MSC:

65D05 Numerical interpolation
28A80 Fractals
Full Text: DOI

References:

[1] Barnsley, M. F., Fractals Everywhere (2014), Academic Press: Academic Press, Boston, MA
[2] Chaikin, G. M., An algorithm for high-speed curve generation, Comput. Graph. Image Process., 3, 4, 346-349 (1974) · doi:10.1016/0146-664X(74)90028-8
[3] Conti, C.; Hormann, K., Polynomial reproduction for univariate subdivision schemes of any arity, J. Approx. Theory, 163, 4, 413-437 (2011) · Zbl 1211.65022 · doi:10.1016/j.jat.2010.11.002
[4] Dyn, N.; Levin, D.; Gregory, J. A., A 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Des., 4, 4, 257-268 (1987) · Zbl 0638.65009 · doi:10.1016/0167-8396(87)90001-X
[5] Goldman, R., The fractal nature of Bezier curves, Proceedings Geometric Modeling and Processing, Beijing, China, 2004, pp. 3-11.
[6] Hassan, M. F.; Ivrissimitzis, I. P.; Dodgson, N. A.; Sabin, M. A., An interpolating-4 point \(####\) ternary stationary subdivision scheme, Comput. Aided Geom. Des., 19, 1, 1-18 (2002) · Zbl 0984.68167 · doi:10.1016/S0167-8396(01)00084-X
[7] Lenka, P., Fractals and Splines (2012), University of West Bohemia: University of West Bohemia, Pilsen, Czech Republic
[8] Lian, J.-A., On a-ary subdivision for curve design: I. 4-point and 6-point interpolatory schemes, Appl. Appl. Math., 3, 1, 18-29 (2008) · Zbl 1175.65027
[9] Mandelbrot, B. B., The Fractal Geometry of Nature (1982), Freeman: Freeman, San Francisco, CA
[10] Schaefer, S., Levin, D., and Goldman, R., Subdivision schemes and attractors, Proceedings of the Eurographics Symposium on Geometry Processing, Vienna, Austria, 2005, pp. 171-180.
[11] Siddiqi, S. S.; Siddiqui, S.; Ahmad, N., Fractal generation using ternary 5-point interpolatory subdivision scheme, Appl. Math. Comput., 234, 402-411 (2014) · Zbl 1298.65024
[12] Siddiqi, S. S.; Idrees, U.; Rehan, K., Generation of fractal curves and surfaces using ternary 4-point interpolatory subdivision scheme, Appl. Math. Comput., 246, 210-220 (2014) · Zbl 1338.41005
[13] Wang, Z.; Pang, Y., A recursive algorithm based four-point interpolation scheme for curve design and its application to rendering of fractals, J. CAD & CG, 9, 3, 223-227 (1997)
[14] Wang, J.; Qian, X., Dimensionality estimation of the fractal interpolatory curve generated by 4-point interpolatory subdivision scheme, J. Gansu Univ. Technol., 29, 3, 120-122 (2003) · Zbl 1050.41007
[15] Wang, J.; Zheng, H.; Xu, F.; Liu, D., Fractal properties of the generalized Chaikin corner-cutting subdivision scheme, Comput. Math. Appl., 61, 2197-2200 (2011) · Zbl 1219.65026 · doi:10.1016/j.camwa.2010.09.014
[16] Zhang, K.; Xu, Z., Theorem of Matrices (2014), Science Press: Science Press, Beijing
[17] Zheng, H.; Ye, Z.; Lei, Y.; Liu, X., Fractal properties of interpolatory subdivision schemes and their application in fractal generation, Chaos Solitons Fractals, 32, 113-123 (2007) · Zbl 1131.28010 · doi:10.1016/j.chaos.2005.10.075
[18] Zheng, H. C.; Li, Y.; Peng, G. H.; Tang, Y. N., A multicontrol p-ary subdivision scheme to generate fractal curves, Appl. Mech. Mater., 263-266, 1830-1833 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.