×

Leray-Hopf solutions to a viscoelastoplastic fluid model with nonsmooth stress-strain relation. (English) Zbl 1481.35310

Summary: We consider a fluid model including viscoelastic and viscoplastic effects. The state is given by the fluid velocity and an internal stress tensor that is transported along the flow with the Zaremba-Jaumann derivative. Moreover, the stress tensor obeys a nonlinear and nonsmooth dissipation law as well as stress diffusion. We prove the existence of global-in-time weak solutions satisfying an energy inequality under general Dirichlet conditions for the velocity field and Neumann conditions for the stress tensor.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76A10 Viscoelastic fluids
35Q35 PDEs in connection with fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids

References:

[1] Moresi, L.; Dufour, F.; Mühlhaus, H.-B., Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling, Pure Appl. Geophys., 159, 2335-2356 (2002)
[2] Gerya, T.; Yuen, D. A., Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems, Phys. Earth Plan. Inter., 163, 1-4, 83-105 (2007)
[3] Herrendörfer, R.; Gerya, T.; van Dinther, Y., An invariant rate- and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations, J. Geophys. Research: Solid Earth, 123, 5018-5051 (2017)
[4] Preuss, S.; Herrendörfer, R.; Gerya, J.-P.; Ampuero, Taras.; van Dinther, Y., Seismic and aseismic fault growth lead to different fault orientations, J. Geophys. Res. Solid Earth, 124, 8867-8889 (2019)
[5] Joseph, D. D.; Renardy, M.; Saut, J.-C., Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Ration. Mech. Anal., 87, 213-251 (1985) · Zbl 0572.76011
[6] Renardy, M.; Renardy, Y., Linear stability of place Couette flow of an upper convected Maxwell fluid, J. Non-Newton. Fluid Mech., 22, 23-33 (1986) · Zbl 0608.76006
[7] Renardy, M.; Hrusa, W. J.; Nohel, J. A., Mathematical Problems in Viscoelasticity (1987), Longman Sci. & Techn. J. Wiley & Sons, Inc. · Zbl 0719.73013
[8] Cook, L. P.; Schleiniger, G., The inlet layer in the flow of viscoelastic fluids, J. Non-Newton. Fluid Mech., 40, 3, 307-321 (1991) · Zbl 0743.76012
[9] Renardy, M., Mathematical analysis of viscoelastic flows, CBMS-NSF Reg, (Conf. Ser. Appl. Math. 73 (2000), SIAM) · Zbl 0956.76001
[10] Lions, P. L.; Masmoudi, N., Global solutions for some oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21, 2, 131-146 (2000) · Zbl 0957.35109
[11] Cai, Y.; Lei, Z.; Lin, F.; Masmoudi, N., Vanishing viscosity limit for incompressible viscoelasticity in two dimensions, Comm. Pure Appl. Math., 72, 10, 2063-2120 (2019) · Zbl 1439.35391
[12] Bulíček, M.; Gwiazda, P.; Málek, J.; Świerczewska-Gwiazda, A., On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., 44, 4, 2756-2801 (2012) · Zbl 1256.35074
[13] Blechta, J.; Málek, J.; Rajagopal, K. R., On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion, SIAM J. Math. Anal., 52, 2, 1232-1289 (2020) · Zbl 1432.76075
[14] Bulíček, M.; Málek, J.; Průša, V.; Süli, E., PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, (Mathematical Analysis in Fluid Mechanics—Selected Recent Results, 710 of Contemp. Math (2018), Amer. Math. Soc.), 25-51 · Zbl 1404.35346
[15] Málek, J.; Průša, V.; Skřivan, T.; Süli, E., Thermodynamics of viscoelastic rate-type fluids with stress diffusion, Phys. Fluids, 30, 1-23 (2018), 023101
[16] Bathory, M.; Bulíček, M.; Málek, J., Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion, Adv. Nonlin. Analysis, 10, 1, 501-521 (2021) · Zbl 1464.35207
[17] Galdi, G. P., An Introduction To the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems (2011), Springer: Springer New York · Zbl 1245.35002
[18] Roubíček, T., (Nonlinear Partial Differential Equations with Applications. Nonlinear Partial Differential Equations with Applications, 153 of International Series of Numerical Mathematics (2013), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel)
[19] Bauschke, H. H.; Combettes, P. L., Convex analysis and monotone operator theory in Hilbert spaces, (Attouch, Hédy, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (2017), Springer: Springer Cham) · Zbl 1359.26003
[20] Antman, S. S., Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49, 6, 980-988 (1998) · Zbl 0928.74007
[21] Farwig, R.; Galdi, G. P.; Sohr, H., A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data, J. Math. Fluid Mech., 8, 3, 423-444 (2006) · Zbl 1104.35032
[22] Farwig, R.; Kozono, H.; Sohr, H., Global weak solutions of the Navier-Stokes system with nonzero boundary conditions, Funkcial. Ekvac., 53, 2, 231-247 (2010) · Zbl 1291.35030
[23] Farwig, R.; Kozono, H.; Sohr, H., Global leray-hopf weak solutions of the Navier-Stokes equations with nonzero time-dependent boundary values, (Parabolic Problems, 80 of Progr. Nonlinear Differential Equations Appl (2011), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel), 211-232 · Zbl 1247.35090
[24] Farwig, R.; Kozono, H.; Sohr, H., Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence, Rend. Semin. Mat. Univ. Padova, 125, 51-70 (2011) · Zbl 1236.35103
[25] Galdi, G. P., An introduction to the Navier-Stokes initial-boundary value problem, (Fundamental Directions in Mathematical Fluid Mechanics. Fundamental Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech (2000), Birkhäuser: Birkhäuser Basel), 1-70 · Zbl 1108.35133
[26] Grubb, G., Nonhomogeneous Dirichlet Navier-Stokes problems in low regularity \(L_p\) Sobolev spaces, J. Math. Fluid Mech., 3, 1, 57-81 (2001) · Zbl 0992.35065
[27] Fursikov, A.; Gunzburger, M.; Hou, L., Trace theorems for three-dimensional, time-dependent solenoidal vector fields and their applications, Trans. Amer. Math. Soc., 354, 3, 1079-1116 (2002) · Zbl 0988.46024
[28] Raymond, J.-P., Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions, Ann. Inst. H. PoincarÉ Anal. Non Linéaire, 24, 6, 921-951 (2007) · Zbl 1136.35070
[29] Sohr, H., The Navier-STokes Equations, BirkhäUser Advanced Texts: Basler Lehrbücher. [BirkhäUser Advanced Texts: Basel Textbooks] (2001), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0983.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.