×

Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. (English) Zbl 1481.35080

Summary: In this paper, we consider a blow-up solution for the complex-valued semilinear wave equation with power non-linearity in one space dimension. We show that the set of non characteristic points \( I_0 \) is open and that the blow-up curve is of class \( C^{1, \mu_0} \) and the phase \( \theta \) is \( C^{\mu_0} \) on this set. In order to prove this result, we introduce a Liouville Theorem for that equation. Our results hold also for the case of solutions with values in \( \mathbb{R}^m \) with \( m\ge 3 \), with the same proof.

MSC:

35B44 Blow-up in context of PDEs
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35L52 Initial value problems for second-order hyperbolic systems
35L71 Second-order semilinear hyperbolic equations
58J45 Hyperbolic equations on manifolds

References:

[1] S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and Their Applications, 17. Birkhäuser Boston Inc., Boston, MA, 1995. · Zbl 0820.35001
[2] S. Alinhac, A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations, In Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2002), pages Exp. No. I, 33. Univ. Nantes, Nantes, 2002.
[3] C. Antonini; F. Merle, Optimal bounds on positive blow-up solutions for a semilinear wave equation, Internat. Math. Res. Notices, 21, 1141-1167 (2001) · Zbl 0989.35090 · doi:10.1155/S107379280100054X
[4] A. Azaiez, Blow-up profile for the complex-valued semilinear wave equation, Trans. Amer. Math. Soc., 367, 5891-5933 (2015) · Zbl 1316.35200 · doi:10.1090/S0002-9947-2014-06370-8
[5] Blow-up rate for a semilinear wave equation with exponential nonlinearity in one space dimension, Proceedings of the MIMS-CIMPA Research School “Partial Differential Equations arising from Physics and Geometry”, 2015.
[6] A. Azaiez; H. Zaag, A modulation technique for the blow-up profile of the vector-valued semilinear wave equation, Bull. Sci. Math., 141, 312-352 (2017) · Zbl 1387.35065 · doi:10.1016/j.bulsci.2017.04.001
[7] L. A. Caffarelli; A. Friedman, The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297, 223-241 (1986) · Zbl 0638.35053 · doi:10.2307/2000465
[8] R. Côte; H. Zaag, Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math., 66, 1541-1581 (2013) · Zbl 1295.35124 · doi:10.1002/cpa.21452
[9] J. Ginibre; A. Soffer; G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., 110, 96-130 (1992) · Zbl 0813.35054 · doi:10.1016/0022-1236(92)90044-J
[10] J. Ginibre; G. Velo, Regularity of solutions of critical and subcritical nonlinear wave equations, Nonlinear Anal., 22, 1-19 (1994) · Zbl 0831.35108 · doi:10.1016/0362-546X(94)90002-7
[11] S. Kichenassamy; W. Littman, Blow-up surfaces for nonlinear wave equations. Ⅰ, Comm. Partial Differential Equations, 18, 431-452 (1993) · Zbl 0803.35093 · doi:10.1080/03605309308820936
[12] S. Kichenassamy; W. Littman, Blow-up surfaces for nonlinear wave equations. Ⅱ, Comm. Partial Differential Equations, 18, 1869-1899 (1993) · Zbl 0803.35094 · doi:10.1080/03605309308820997
[13] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form \(\begin{document}Pu_{tt} = -Au+{\mathcal F}(u)\end{document} \), Trans. Amer. Math. Soc., 192, 1-21 (1974) · Zbl 0288.35003 · doi:10.2307/1996814
[14] H. Lindblad; C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130, 357-426 (1995) · Zbl 0846.35085 · doi:10.1006/jfan.1995.1075
[15] F. Merle; H. Zaag, Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math., 125, 1147-1164 (2003) · Zbl 1052.35043
[16] F. Merle; H. Zaag, On growth rate near the blowup surface for semilinear wave equations, Int. Math. Res. Not., 19, 1127-1155 (2005) · Zbl 1160.35478 · doi:10.1155/IMRN.2005.1127
[17] F. Merle; H. Zaag, Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., 253, 43-121 (2007) · Zbl 1133.35070 · doi:10.1016/j.jfa.2007.03.007
[18] F. Merle; H. Zaag, Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation, Comm. Math. Phys., 282, 55-86 (2008) · Zbl 1159.35046 · doi:10.1007/s00220-008-0532-3
[19] Points caractéristiques à l’explosion pour une équation semilinéaire des ondes, In “Séminaire X-EDP”. École Polytech., Palaiseau, 2010.
[20] F. Merle; H. Zaag, Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math., 134, 581-648 (2012) · Zbl 1252.35204 · doi:10.1353/ajm.2012.0021
[21] F. Merle; H. Zaag, Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation, Duke Math. J, 161, 2837-2908 (2012) · Zbl 1270.35320 · doi:10.1215/00127094-1902040
[22] F. Merle; H. Zaag, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333, 1529-1562 (20153) · Zbl 1315.35134 · doi:10.1007/s00220-014-2132-8
[23] F. Merle; H. Zaag, Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions, Trans. Amer. Math. Soc., 368, 27-87 (2016) · Zbl 1339.35062 · doi:10.1090/tran/6450
[24] N. Nouaili, \( \begin{document}c^{1,\mu_0} \end{document}\) regularity of the blow-up curve at non characteristic points for the one dimensional semilinear wave equation, Comm. Partial Differential Equations, 33, 1540-1548 (2008) · Zbl 1158.35335 · doi:10.1080/03605300802234937
[25] J. Shatah and M. Struwe, Geometric Wave Equations, volume 2 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 1998. · Zbl 0993.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.