×

Probabilistic approach to limited-data computed tomography reconstruction. (English) Zbl 1480.94008

Summary: In this work, we consider the inverse problem of reconstructing the internal structure of an object from limited x-ray projections. We use a Gaussian process (GP) prior to model the target function and estimate its (hyper)parameters from measured data. In contrast to other established methods, this comes with the advantage of not requiring any manual parameter tuning, which usually arises in classical regularization strategies. Our method uses a basis function expansion technique for the GP which significantly reduces the computational complexity and avoids the need for numerical integration. The approach also allows for reformulation of come classical regularization methods as Laplacian and Tikhonov regularization as GP regression, and hence provides an efficient algorithm and principled means for their parameter tuning. Results from simulated and real data indicate that this approach is less sensitive to streak artifacts as compared to the commonly used method of filtered backprojection.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
60G15 Gaussian processes
62F15 Bayesian inference
62G05 Nonparametric estimation

Software:

BayesDA

References:

[1] Cormack A M 1963 Representation of a function by its line integrals, with some radiological applications J. Appl. Phys.34 2722-7 · Zbl 0117.32303 · doi:10.1063/1.1729798
[2] Cormack A M 1964 Representation of a function by its line integrals, with some radiological applications. II J. Appl. Phys.35 2908-13 · Zbl 0122.18401 · doi:10.1063/1.1713127
[3] Herman G T 1995 Image reconstruction from projections Real-Time Imaging1 3-18 · doi:10.1006/rtim.1995.1002
[4] Kuchment P 2013 The Radon Transform and Medical Imaging (Philadelphia, PA: SIAM) · Zbl 1282.92001 · doi:10.1137/1.9781611973297
[5] Council N R et al 1996 Mathematics and Physics of Emerging Biomedical Imaging (Washington, DC: The National Academies Press) · Zbl 0854.92009
[6] Shepp L A and Kruskal J 1978 Computerized tomography: the new medical x-ray technology Am. Math. Mon.85 420-39 · Zbl 0381.68079 · doi:10.1080/00029890.1978.11994611
[7] Akin S and Kovscek A 2003 Computed tomography in petroleum engineering research Geol. Soc.215 23-38 · doi:10.1144/GSL.SP.2003.215.01.03
[8] Cartz L 1995 Nondestructive Testing (Office of Scientific and Technical Information, DC: ASM International)
[9] De Chiffre L, Carmignato S, Kruth J-P, Schmitt R and Weckenmann A 2014 Industrial applications of computed tomography CIRP Ann.: Manuf. Technol.63 655-77 · doi:10.1016/j.cirp.2014.05.011
[10] Kak A C and Slaney M 1988 Principles of Computerized Tomographic Imaging (New York: IEEE) · Zbl 0721.92011
[11] Buzug T M 2008 Computed Tomography: from Photon Statistics to Modern Cone-Beam CT (Berlin: Springer)
[12] Riis N, Frøsig J, Dong Y and Hansen P 2018 Limited-data x-ray CT for underwater pipeline inspection Inverse Problems34 034002 · Zbl 06858476 · doi:10.1088/1361-6420/aaa49c
[13] Niklason L T et al 1997 Digital tomosynthesis in breast imaging Radiology205 399-406 · doi:10.1148/radiology.205.2.9356620
[14] Rantala M, Vanska S, Jarvenpaa S, Kalke M, Lassas M, Moberg J and Siltanen S 2006 Wavelet-based reconstruction for limited-angle x-ray tomography IEEE Trans. Med. Imaging25 210-7 · doi:10.1109/TMI.2005.862206
[15] Wu T et al 2003 Tomographic mammography using a limited number of low-dose cone-beam projection images Med. Phys.30 365-80 · doi:10.1118/1.1543934
[16] Zhang Y, Chan H-P, Sahiner B, Wei J, Goodsitt M M, Hadjiiski L M, Ge J and Zhou C 2006 A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis Med. Phys.33 3781-95 · doi:10.1118/1.2237543
[17] Fanelli D and Öktem O 2008 Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem Inverse Problems24 013001 · Zbl 1137.78306 · doi:10.1088/0266-5611/24/1/013001
[18] Natterer F 1986 The Mathematics of Computerized Tomography vol 32 (Philadelphia, PA: SIAM) · Zbl 0617.92001
[19] Kaipio J and Somersalo E 2006 Statistical and Computational Inverse Problems vol 160 (Berlin: Springer)
[20] Bouman C A and Sauer K 1996 A unified approach to statistical tomography using coordinate descent optimization IEEE Trans. Image Process.5 480-92 · doi:10.1109/83.491321
[21] Haario H, Kallonen A, Laine M, Niemi E, Purisha Z and Siltanen S 2017 Shape recovery for sparse-data tomography Math. Methods Appl. Sci.40 6649-69 · Zbl 1382.65044 · doi:10.1002/mma.4480
[22] Kolehmainen V, Siltanen S, Järvenpää S, Kaipio J P, Koistinen P, Lassas M, Pirttilä J and Somersalo E 2003 Statistical inversion for medical x-ray tomography with few radiographs: II. Application to dental radiology Phys. Med. Biol.48 1465 · doi:10.1088/0031-9155/48/10/315
[23] Siltanen S, Kolehmainen V, Järvenpää S, Kaipio J, Koistinen P, Lassas M, Pirttilä J and Somersalo E 2003 Statistical inversion for medical x-ray tomography with few radiographs: I. General theory Phys. Med. Biol.48 1437 · doi:10.1088/0031-9155/48/10/314
[24] Sauer K, Sachs J and Klifa C 1994 Bayesian estimation of 3D objects from few radiographs IEEE Trans. Nucl. Sci.41 1780-90 · doi:10.1109/23.317389
[25] Rasmussen C E and Williams C K I 2006 Gaussian Processes for Machine Learning (Cambridge, MA: MIT Press) · Zbl 1177.68165
[26] Tarantola A 2005 Inverse Problem Theory and Methods for Model Parameter Estimation vol 89 (Philadelphia, PA: SIAM) · Zbl 1074.65013 · doi:10.1137/1.9780898717921
[27] Hendriks J, Gregg A, Wensrich C and Wills W 2018 Implementation of traction constraints in bragg-edge neutron transmission strain tomography (arXiv:1805.09760)
[28] Jidling C, Hendriks J, Wahlström N, Gregg A, Schön T B, Wensrich C and Wills A 2018 Probabilistic modelling and reconstruction of strain (arXiv:1802.03636)
[29] Li D, Svensson J, Thomsen H, Medina F, Werner A and Wolf R 2013 Bayesian soft x-ray tomography using non-stationary Gaussian processes Rev. Sci. Instrum.84 083506 · doi:10.1063/1.4817591
[30] Svensson J 2011 Non-Parametric Tomography using Gaussian Processes (Culham, UK: EFDA)
[31] Solin A and Särkkä S 2018 Hilbert space methods for reduced-rank Gaussian process regression Stat. Comput. pp 1-28 · Zbl 1436.62316 · doi:10.1007/s11222-019-09886-w
[32] Bouman C and Sauer K 1992 A generalized gaussian image model for edge-preserving map estimation ECE Technical Reports p 277
[33] Sachs J and Sauer K 1999 3D reconstruction from sparse radiographic data Discrete Tomography (Berlin: Springer) pp 363-83 · doi:10.1007/978-1-4612-1568-4_16
[34] Särkkä S 2011 Linear operators and stochastic partial differential equations in Gaussian process regression Proc. of ICANN · doi:10.1007/978-3-642-21738-8_20
[35] Kimeldorf G S and Wahba G 1970 A correspondence between Bayesian estimation on stochastic processes and smoothing by splines Ann. Math. Stat.41 495-502 · Zbl 0193.45201 · doi:10.1214/aoms/1177697089
[36] Mueller J L and Siltanen S 2012 Linear and Nonlinear Inverse Problems with Practical Applications vol 10 (Philadelphia, PA: SIAM) · Zbl 1262.65124 · doi:10.1137/1.9781611972344
[37] Brooks S, Gelman A, Jones G and Meng X-L 2011 Handbook of Markov Chain Monte Carlo (Boca Raton, FL: CRC Press) · Zbl 1218.65001 · doi:10.1201/b10905
[38] Gelman A, Carlin J B, Stern H S, Dunson D B, Vehtari A and Rubin D B 2013 Bayesian Data Analysis 3rd edn (London: Chapman and Hall)
[39] Hansen P C 1992 Analysis of discrete ill-posed problems by means of the L-curve SIAM Rev.34 561-80 · Zbl 0770.65026 · doi:10.1137/1034115
[40] Kohavi R et al 1995 A study of cross-validation and bootstrap for accuracy estimation and model selection (IJCAI vol 14) pp 1137-45
[41] Vehtari A, Gelman A and Gabry J 2017 Practical bayesian model evaluation using leave-one-out cross-validation and waic Stat. Comput.27 1413-32 · Zbl 1505.62408 · doi:10.1007/s11222-016-9696-4
[42] Segment lungs from 3D chest scan and calculate lung volume https://se.mathworks.com/help/images/segment-lungs-from-3-d-chest-mri-data.html (Accessed: 09 July 2018)
[43] Goldman L W 2007 Principles of CT: radiation dose and image quality J. Nucl. Med. Technol.35 213-25 · doi:10.2967/jnmt.106.037846
[44] www.fips.fi/datasetpage.php (Accessed: 09 July 2018)
[45] Bubba T A, Juvonen M, Lehtonen J, März M, Meaney A, Purisha Z and Siltanen S 2017 Tomographic x-ray data of carved cheese (arXiv:1705.05732)
[46] Mookiah M R K, Subburaj K, Mei K, Kopp F K, Kaesmacher J, Jungmann P M, Foehr P, Noel P B, Kirschke J S and Baum T 2018 Multidetector computed tomography imaging: effect of sparse sampling and iterative reconstruction on trabecular bone microstructure J. Comput. Assist. Tomogr.42 441-7 · doi:10.1097/RCT.0000000000000710
[47] Flohr T G, Schaller S, Stierstorfer K, Bruder H, Ohnesorge B M and Schoepf U J 2005 Multi-detector row CT systems and image-reconstruction techniques Radiology235 756-73 · doi:10.1148/radiol.2353040037
[48] Sidky E Y and Pan X 2008 Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization Phys. Med. Biol.53 4777 · doi:10.1088/0031-9155/53/17/021
[49] Purisha Z, Karhula S S, Ketola J H, Rimpeläinen J, Nieminen M T, Saarakkala S, Kröger H and Siltanen S 2018 An automatic regularization method: an application for 3D x-ray micro-CT reconstruction using sparse data IEEE Trans. Med. Imaging38 417-25 · doi:10.1109/TMI.2018.2865646
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.