×

Finite-time state bounding of homogeneous nonlinear positive systems with disturbance. (English) Zbl 1480.93373

Summary: This paper deals with the finite-time state bounding problem of homogeneous nonlinear positive systems with disturbance. Based on a technique used in positive systems, explicit conditions are established such that all solutions of homogeneous nonlinear positive systems with degree \(0<p<1\) converge to a ball in finite time. The approach used in this paper is different from the usual Lyapunov-Krasovskii functional method. We also extend the main result to the general nonlinear time-varying systems. Finally, two numerical examples are given to show the effectiveness of our results.

MSC:

93D40 Finite-time stability
93C28 Positive control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Farina, L.; Rinaldi, S., Positive Linear Systems: Theory and Applications (2000), Wiley: Wiley New York, NY, USA · Zbl 0988.93002
[2] Kaczorek, T., Positive 1D and 2D Systems (2002), Springer-Verlag: Springer-Verlag New York, NY, USA: · Zbl 1005.68175
[3] Liu, J.; Lam, J.; Shu, Z., Positivity-preserving consensus of homogeneous multiagent systems, IEEE Trans. Autom. Control, 65, 2724-2729 (2020) · Zbl 1533.93728
[4] Shen, J.; Liu, J.; Cui, Y., An exact characterization of the \(l_1 / l_-\) index of positive systems and its application to fault detection filter design, IEEE Trans. Circt. Syst. II (2020)
[5] Liu, J.; Lam, J.; Xie, X., Generalized lead-lag \(h_\infty\) compensators for MIMO linear systems, IEEE Trans. Syst. Man Cybern., 99, 1-11 (2020)
[6] Cui, Y.; Yang, N.; Liu, J., A novel approach for positive edge consensus of nodal networks, J. Frankl. Inst., 357, 4349-4362 (2020) · Zbl 1437.93118
[7] Liu, J.; Lam, J.; Wang, Y.; Cui, Y.; Shu, Z., Robust and nonfragile consensus of positive multiagent systems via observer-based output-feedback protocols, Int. J. Robust Nonlinear Control, 30, 5386-5403 (2020) · Zbl 1465.93199
[8] Chang, X.; Yang, G., Nonfragile \(h_\infty\) filtering of continuous-time fuzzy systems, IEEE Trans. Signal Process., 59, 1528-1538 (2011) · Zbl 1391.93134
[9] Ma, L.; Zong, G.; Zhao, X.; Huo, X., Observed-based adaptive finite-time tracking control for a class of nonstrict-feedback nonlinear systems with input saturation, J. Frankl. Inst., 357, 11518-11544 (2020) · Zbl 1450.93062
[10] Haddad, W. M.; Chellaboina, V., Stability theory for nonnegative and compartmental dynamical systems with time delay, Syst. Control Lett., 51, 355-361 (2004) · Zbl 1157.34352
[11] Yin, Y.; Zong, G.; Zhao, X., Improved stability criteria for switched positive linear systems with average dwell time switching, J. Frankl. Inst., 354, 3472-3484 (2017) · Zbl 1364.93693
[12] Mason, O.; Verwoerd, M., Observations on the stability properties of cooperative system, Syst. Control Lett., 58, 461-467 (2009) · Zbl 1161.93021
[13] Li, S.; Xiang, Z.; Karimi, H. R., Stability and l1-gain controller design for positive switched systems with mixed time-varying delays, Appl. Math. Comput., 222, 507-518 (2013) · Zbl 1328.93215
[14] Bokharaie, V. S.; Mason, O.; Verwoerd, M., D-stability and delay independent stability of homogeneous cooperative systems, IEEE Trans. Autom. Control, 55, 2882-2885 (2010) · Zbl 1368.93589
[15] Bokharaie, V. S.; Mason, O.; Wirth, F., Stability and positivity of equilibria for subhomogeneous cooperative systems, Nonlinear Anal., 74, 6416-6426 (2011) · Zbl 1235.34164
[16] Shen, J.; Lam, J., Decay rate constrained stability analysis for positive systems with discrete and distributed delays, Syst. Sci. Control Eng., 2, 7-12 (2014)
[17] Li, Y.; Sun, Y.; Meng, F., Exponential stabilization of switched time-varying systems with delays and disturbances, Appl. Math. Comput., 324, 131-140 (2018) · Zbl 1426.34101
[18] Li, Y.; Sun, Y.; Meng, F., New criteria for exponential stability of switched time-varying systems with delays and nonlinear disturbances, Nonlinear Anal. Hybrid Syst., 26, 284-291 (2017) · Zbl 1373.93271
[19] Tian, Y.; Cai, Y.; Sun, Y.; Gao, H., Finite-time stability for impulsive switched delay systems with nonlinear disturbances, J. Frankl. Inst., 353, 3578-3597 (2016) · Zbl 1347.93198
[20] Liu, X.; Yu, W.; Wang, L., Stability analysis for continuous-time positive systems with time-varying delays, IEEE Trans. Autom. Control, 55, 1024-1028 (2010) · Zbl 1368.93600
[21] Feyzmahdavian, H. R.; Charalambous, T.; Johansson, M., Exponential stability of homogeneous positive systems of degree one with time-varying delays, IEEE Trans. Autom. Control, 59, 1594-1599 (2014) · Zbl 1360.93596
[22] Sun, Y.; Tian, Y.; Xie, X. J., Stabilization of positive switched linear systems and its application in consensus of multiagent systems, IEEE Trans. Autom. Control, 62, 6608-6613 (2017) · Zbl 1390.93646
[23] Sun, Y.; Wu, Z.; Meng, F., Common weak linear copositive Lyapunov functions for positive switched linear systems, Complexity, 2018, 1-7 (2018) · Zbl 1398.93309
[24] Zhang, N.; Sun, Y.; Meng, F., State bounding for switched homogeneous positive nonlinear systems with exogenous input, Nonlinear Anal. Hybrid Syst., 29, 363-372 (2018) · Zbl 1388.93049
[25] Zhu, X.; Sun, Y.; Xie, X., State bounding for a class of nonlinear time-varying systems with delay and disturbance, J. Frankl. Inst., 355, 8213-8224 (2018) · Zbl 1398.93143
[26] Fridman, E.; Shaked, U., On reachable sets for linear systems with delay and bounded peak inputs, Automatica, 39, 2005-2010 (2003) · Zbl 1037.93042
[27] Kim, J. H., Improved ellipsoidal bound of reachable sets for time-delayed linear systems with disturbances, Automatica, 44, 2940-2943 (2008) · Zbl 1152.93309
[28] Zuo, Z.; Ho, D. W.C.; Wang, Y., Reachable set bounding for delayed systems with polytopic uncertainties: the maximal Lyapunov-Krasovskii functional approach, Automatica, 46, 949-952 (2010) · Zbl 1191.93127
[29] Kwon, O. M.; Lee, S. M.; Park, J. H., On the reachable set bounding of uncertain dynamic systems with time-varying delays and disturbances, Inf. Sci., 181, 3735-3748 (2011) · Zbl 1243.93015
[30] Nam, P. T.; Pathirana, P. N., Further result on reachable set bounding for linear uncertain polytopic systems with interval time-varying delays, Automatica, 47, 1838-1841 (2011) · Zbl 1226.93024
[31] That, N. D.; Nam, P. T.; Ha, Q. P., Reachable set bounding for linear discrete-time systems with delays and bounded disturbances, J. Optim. Theory Appl., 157, 96-107 (2013) · Zbl 1264.93020
[32] Zuo, Z.; Che, Y.; Wang, Y.; Ho, D. W.C.; Chen, M. Z.Q.; Li, H., A note on reachable set bounding for delayed systems with polytopic uncertainties, J. Frankl. Inst., 350, 1827-1835 (2013) · Zbl 1392.93004
[33] Zhang, B.; Lam, J.; Xu, S., Reachable set estimation and controller design for distributed delay systems with bounded disturbances, J. Frankl. Inst., 351, 3068-3088 (2014) · Zbl 1290.93020
[34] Shen, T.; Petersen, I. R., An ultimate state bound for a class of linear systems with delay, Automatica, 87, 447-449 (2018) · Zbl 1378.93056
[35] Hien, L. V.; Trinh, H. M., A new approach to state bounding for linear time-varying system with delay and bounded disturbances, Automatica, 50, 1735-1738 (2014) · Zbl 1296.93046
[36] Zhang, J.; Sun, Y., Reachable set estimation for switched nonlinear positive systems with impulse and time delay, Int. J. Robust Nonlinear Control, 30, 3332-3343 (2020) · Zbl 1466.93015
[37] Nam, P. T.; Pathirana, P. N.; Trinh, H., Reachable set bounding for nonlinear perturbed time-delay systems: the smallest bound, Appl. Math. Lett., 43, 68-71 (2015) · Zbl 1310.93029
[38] Zhang, N.; Sun, Y.; Zhao, P., State bounding for homogeneous positive systems of degree one with time-varying delay and exogenous input, J. Frankl. Inst., 354, 2893-2904 (2017) · Zbl 1364.93361
[39] Sun, Y.; Meng, F., Reachable set estimation for a class of nonlinear time-varying systems, Complexity, 2017, 1-6 (2017) · Zbl 1373.93061
[40] Zhu, X.; Sun, Y., Reachable set bounding for homogeneous nonlinear systems with delay and disturbance, Complexity, 2019, 1-6 (2019) · Zbl 1421.93109
[41] Dong, J. G., On the decay rates of homogeneous positive systems of any degree with time-varying delays, IEEE Trans. Autom. Control, 60, 2983-2988 (2015) · Zbl 1360.93494
[42] Smith, H., Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Am. Math. Soc. (1995) · Zbl 0821.34003
[43] Hale, J. H.; Lunel, S. M.V., Introduction to Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York: · Zbl 0787.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.