×

Averaged dynamics and control for heat equations with random diffusion. (English) Zbl 1480.93191

Summary: This paper deals with the averaged dynamics for heat equations in the degenerate case where the diffusivity coefficient, assumed to be constant, is allowed to take the null value. First we prove that the averaged dynamics is analytic. This allows to show that, most often, the averaged dynamics enjoys the property of unique continuation and is approximately controllable. We then determine if the averaged dynamics is actually null controllable or not depending on how the density of averaging behaves when the diffusivity vanishes. In the critical density threshold the dynamics of the average is similar to the \(\frac{ 1}{ 2} \)-fractional Laplacian, which is well-known to be critical in the context of the controllability of fractional diffusion processes. Null controllability then fails (resp. holds) when the density weights more (resp. less) in the null diffusivity regime than in this critical regime.

MSC:

93C20 Control/observation systems governed by partial differential equations
93E03 Stochastic systems in control theory (general)
35K05 Heat equation
35R60 PDEs with randomness, stochastic partial differential equations
93B05 Controllability
93B07 Observability

References:

[1] Zuazua, E., Stable observation of additive superpositions of partial differential equations, Systems Control Lett., 93, 21-29 (2016) · Zbl 1336.93036
[2] Lü, Q.; Zuazua, E., Averaged controllability for random evolution partial differential equations, J. Math. Pure. Appl., 105, 3, 367-414 (2016) · Zbl 1332.93058
[3] Coulson, J.; Gharesifard, B.; Mansouri, A.-R., On average controllability of random heat equations with arbitrarily distributed diffusivity, Automatica, 103, 46-52 (2019) · Zbl 1415.93044
[4] Fattorini, H. O.; Russell, D. L., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43, 4, 272-292 (1971) · Zbl 0231.93003
[5] Micu, S.; Zuazua, E., On the controllability of a fractional order parabolic equation, SIAM J. Control Optim., 44, 6, 1950-1972 (2006) · Zbl 1116.93022
[6] Miller, L., On the controllability of anomalous diffusions generated by the fractional Laplacian, Math. Control Signal., 18, 3, 260-271 (2006) · Zbl 1105.93015
[7] Biccari, U.; Warma, M.; Zuazua, E., Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17, 2, 387-409 (2017) · Zbl 1360.35033
[8] Biccari, U.; Hernández-Santamaría, V., Controllability of a one-dimensional fractional heat equation: theoretical and numerical aspects, IMA J. Math. Control I., 36, 4, 1199-1235 (2019) · Zbl 1475.93010
[9] Borel, E., Sur les zéros des fonctions entières, Acta Math., 20, 357-396 (1897) · JFM 28.0360.01
[10] Apraiz, J.; Escauriaza, L.; Wang, G.; Zhang, C., Observability inequalities and measurable sets, J. Eur. Math. Soc., 16, 11, 2433-2475 (2014) · Zbl 1302.93040
[11] Miller, L., A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Cont. Dyn. B, 14, 1465-1485 (2010) · Zbl 1219.93017
[12] Miller, L., Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time, J. Differential Equations, 204, 1, 202-226 (2004) · Zbl 1053.93010
[13] Miller, L., The control transmutation method and the cost of fast controls, SIAM J. Control. Optim., 45, 2, 762-772 (2006) · Zbl 1109.93009
[14] Tenenbaum, G.; Tucsnak, M., New blow-up rates for fast controls of Schrödinger and heat equations, J. Differential Equations, 243, 1, 70-100 (2007) · Zbl 1127.93016
[15] Ervedoza, S.; Zuazua, E., Sharp observability estimates for heat equations, Arch. Ration. Mech. Anal., 202, 3, 975-1017 (2011) · Zbl 1251.93040
[16] Laurent, C.; Léautaud, M., Observability of the heat equation, geometric constants in control theory, and a conjecture of Luc Miller (2018), arXiv preprint arXiv:1806.00969
[17] Bender, C. M.; Orszag, S. A., Advances Mathematical Methods for Scientists and Engineers (1978), Mcgraw-Hill book company · Zbl 0417.34001
[18] Ivrii, V., 100 years of Weyl’s law, B. Math. Sci., 6, 3, 379-452 (2016) · Zbl 1358.35075
[19] Lü, Q., A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators*, ESAIM: COCV, 19, 1, 255-273 (2013) · Zbl 1258.93035
[20] Lebeau, G.; Robbiano, L., Contrôle exact de l’équation de la chaleur, Commun. Part. Diff. Eq., 20, 1-2, 335-356 (1995) · Zbl 0819.35071
[21] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[22] Coron, J.-M.; Guerrero, S., Singular optimal control: a linear 1-D parabolic-hyperbolic example, Asymptotic Anal., 44, 3, 4, 237-257 (2005) · Zbl 1078.93009
[23] Krantz, S. G.; Parks, H. R., A Primer of Real Analytic Functions (2002), Springer Science & Business Media · Zbl 1015.26030
[24] Fernández-Cara, E.; Zuazua, E., The cost of approximate controllability for heat equations: the linear case, Adv. Differential Equations, 5, 4-6, 465-514 (2000) · Zbl 1007.93034
[25] Zuazua, E., Averaged control, Automatica, 50, 12, 3077-3087 (2014) · Zbl 1309.93029
[26] Abdelli, M.; Castro, C., Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation, ESAIM: COCV, 27, 64, 1-26 (2021) · Zbl 1481.65194
[27] Glowinski, R.; Lions, J. L., Exact and approximate controllability for distributed parameter systems, Acta Numer., 1, 269-378 (1994) · Zbl 0838.93013
[28] Münch, A.; Zuazua, E., Numerical approximation of null controls for the heat equation: ill-posedness and remedies, Inverse Problems, 26, 8, Article 085018 pp. (2010) · Zbl 1203.35015
[29] Fernández-Cara, E.; Münch, A., Strong convergent approximations of null controls for the 1D heat equation, SÉMA J., 61, 1, 49-78 (2013) · Zbl 1263.35121
[30] Lü, Q.; Zhang, X., A concise introduction to control theory for stochastic partial differential equations (2021), arXiv preprint arXiv:2101.10678
[31] Lazar, M.; Lohéac, J., Control of parameter dependent systems (2020), Hal-03035494
[32] Privat, Y.; Trélat, E.; Zuazua, E., Optimal shape and location of sensors for parabolic equations with random initial data, Arch. Ration. Mech. Anal., 216, 3, 921-981 (2015) · Zbl 1319.35272
[33] Bárcena-Petisco, J. A., Null controllability of the heat equation in pseudo-cylinders by an internal control, ESAIM: COCV, 26, 122, 1-34 (2020) · Zbl 1459.35227
[34] Escauriaza, L.; Montaner, S.; Zhang, C., Analyticity of solutions to parabolic evolutions and applications, SIAM J. Math. Anal., 49, 5, 4064-4092 (2017) · Zbl 1377.35048
[35] Phung, K. D.; Wang, G., An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., 15, 2, 681-703 (2013) · Zbl 1258.93037
[36] Lazar, M.; Zuazua, E., Averaged control and observation of parameter-depending wave equations, C. R. Math., 352, 6, 497-502 (2014) · Zbl 1302.35043
[37] Lohéac, J.; Zuazua, E., Averaged controllability of parameter dependent conservative semigroups, J. Differential Equations, 262, 3, 1540-1574 (2017) · Zbl 1352.93025
[38] Marín, F. J.; Martínez-Frutos, J.; Periago, F., Robust averaged control of vibrations for the Bernoulli-Euler beam equation, J. Optim. Theory Appl., 174, 2, 428-454 (2017) · Zbl 1373.35304
[39] Chaves-Silva, F. W.; Lebeau, G., Spectral inequality and optimal cost of controllability for the Stokes system, ESAIM:COCV, 22, 4, 1137-1162 (2016) · Zbl 1357.35178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.