×

Gravitational wave modeling of extreme mass ratio inspirals perturbed by an outer supermassive black hole. (English) Zbl 1480.83038

Summary: We apply the method of osculating orbits in the Schwarzschild-Droste space-time using the relativistic orbital evolution equations for a perturbed extreme mass ratio inspiral (EMRI) by an outer supermassive black hole. The latter supposedly lies in the orbital plane, so that the orbital elements related to inclination and ascending node do not play a role. Our approach encompasses both strong and weak gravity fields. For calculating the gravitational waveforms of perturbed EMRIs through the Regge-Wheeler-Zerilli wave equations, we apply the second-order source-free integration method. Designed for integration in the time domain, our algorithm consists of a finite difference scheme that discretizes the space-time into a grid cell \((t,r^*)\), whereas the discontinuity of the gravity field at the world line of the particle is dealt with jump conditions on the wave function and its derivatives.

MSC:

83C35 Gravitational waves
83C57 Black holes
70M20 Orbital mechanics
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
Full Text: DOI

References:

[1] Poincaré, H., Acta Math., 13, 131-270 (1890) · JFM 22.0907.01
[2] Sundman, K. F., Acta Math., 36, 105-179 (1913) · JFM 43.0826.01 · doi:10.1007/BF02422379
[3] Barrow-Green, J., Historia Mathematica, 37, 164-203 (2010) · Zbl 1193.01037 · doi:10.1016/j.hm.2009.12.004
[4] Beutler, G., Methods of Celestial Mechanics (2005), New York: Springer, New York · Zbl 1095.70001 · doi:10.1007/b137725
[5] Pound, A.; Poisson, E., Phys. Rev. D, 77, 044013 (2008) · doi:10.1103/PhysRevD.77.044013
[6] Blanchet, L., Living Reviews in Relativity, 17, 1-187 (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[7] Kidder, L. E.; Will, C. M.; Wiseman, A. G., Phys. Rev. D, 47, 3281 (1993) · doi:10.1103/PhysRevD.47.3281
[8] Wardell, Z. E., Mon. Not. R. Astron. Soc., 334, 149 (2002) · doi:10.1046/j.1365-8711.2002.05498.x
[9] Lousto, C. O.; Nakano, H., Class. Quantum Grav., 25, 195019 (2008) · Zbl 1151.83309 · doi:10.1088/0264-9381/25/19/195019
[10] Yang, H.; Casals, M., Phys. Rev. D, 96, 083015 (2017) · doi:10.1103/PhysRevD.96.083015
[11] Bonga, B.; Yang, H.; Hughes, S. A., Phys. Rev. Lett., 123, 101103 (2019) · doi:10.1103/PhysRevLett.123.101103
[12] Barausse, E., Gen. Rel. Grav., 52, 81 (2020) · doi:10.1007/s10714-020-02691-1
[13] Amaro Seoane, P., Class. Quantum Grav., 24, R113 (2007) · Zbl 1128.85300 · doi:10.1088/0264-9381/24/17/R01
[14] Amaro Seoane, P., J. Phys.: Conf. Ser., 610, 012002 (2015)
[15] Amaro-Seoane, P., Class. Quantum Grav., 29, 124016 (2012) · doi:10.1088/0264-9381/29/12/124016
[16] Tremmel, M., Astroph. J. Lett., 857, L22 (2018) · doi:10.3847/2041-8213/aabc0a
[17] Yunes, N.; Miller, M. C.; Thornburg, J., Phys. Rev. D, 83, 044030 (2011) · doi:10.1103/PhysRevD.83.044030
[18] Lincoln, C. W.; Will, C. M., Phys. Rev. D, 42, 1123 (1990) · doi:10.1103/PhysRevD.42.1123
[19] Calura, M.; Fortini, P.; Montanari, E., Phys. Rev. D, 56, 4782 (1997) · doi:10.1103/PhysRevD.56.4782
[20] Calura, M.; Fortini, P.; Montanari, E., Class. Quantum Grav., 15, 3121 (1998) · Zbl 0942.83016 · doi:10.1088/0264-9381/15/10/015
[21] Damour, T.; Gopakumar, A.; Iyer, B. R., Phys. Rev. D, 70, 064028 (2004) · doi:10.1103/PhysRevD.70.064028
[22] Warburton, N.; Osburn, T.; Evans, C. R., Phys. Rev. D, 96, 084057 (2017) · doi:10.1103/PhysRevD.96.084057
[23] M. Maggiore, Gravitational Waves. Vol. 2 Astrophysics and Cosmology (Oxford University Press, 2018).
[24] Regge, T.; Wheeler, J., Phys. Rev., 108, 1063 (1957) · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[25] Zerilli, F. J., Phys. Rev. Lett., 24, 737 (1970) · doi:10.1103/PhysRevLett.24.737
[26] Zerilli, F. J., Phys. Rev. D, 2, 2141 (1970) · Zbl 1227.83025 · doi:10.1103/PhysRevD.2.2141
[27] Moncrief, V., Ann. Phys., 88, 323 (1974) · doi:10.1016/0003-4916(74)90173-0
[28] Lousto, C. O.; Price, R. H., Phys. Rev. D, 56, 6439 (1997) · doi:10.1103/PhysRevD.56.6439
[29] Barack, L.; Lousto, C. O., Phys. Rev. D, 72, 104026 (2005) · doi:10.1103/PhysRevD.72.104026
[30] Poisson, E., Phys. Rev. D, 52, 5719 (1995) · doi:10.1103/PhysRevD.52.5719
[31] Poisson, E., Phys. Rev. D, 55, 7980 (1997) · doi:10.1103/PhysRevD.55.7980
[32] Martel, K., Phys. Rev. D, 69, 044025 (2004) · doi:10.1103/PhysRevD.69.044025
[33] Aoudia, S.; Spallicci, A. D. A. M., Phys. Rev. D, 83, 064029 (2011) · doi:10.1103/PhysRevD.83.064029
[34] Ritter, P.; Aoudia, S.; Spallicci, A. D. A. M.; Cordier, S., Int. J. Geom. Meth. Mod. Phys., 13, 1650021 (2016) · Zbl 1360.35276 · doi:10.1142/S0219887816500213
[35] Ritter, P.; Spallicci, A. D. A. M.; Aoudia, S.; Cordier, S., Class. Quantum Grav., 28, 134012 (2011) · Zbl 1222.83050 · doi:10.1088/0264-9381/28/13/134012
[36] Ritter, P.; Aoudia, S.; Spallicci, A. D. A. M.; Cordier, S., Int. J. Geom. Meth. Mod. Phys., 13, 1650019 (2016) · Zbl 1332.83025 · doi:10.1142/S0219887816500195
[37] Spallicci, A. D. A. M.; Ritter, P.; Aoudia, S., Int. J. Geom. Meth. Mod. Phys., 11, 1450072 (2014) · Zbl 1304.83010 · doi:10.1142/S0219887814500728
[38] Spallicci, A. D. A. M.; Ritter, P., Int. J. Geom. Meth. Mod. Phys., 11, 1450090 (2014) · Zbl 1327.83056 · doi:10.1142/S021988781450090X
[39] Oltean, M.; Sopuerta, C. F.; Spallicci, A. D. A. M., J. Phys.: Conf. Ser., 840, 012056 (2017)
[40] Oltean, M.; Sopuerta, C. F.; Spallicci, A. D. A. M., J. Scient. Comp., 79, 827 (2019) · Zbl 1423.83012 · doi:10.1007/s10915-018-0873-9
[41] Chandrasekhar, S., The Mathematical Theory of Black Holes (1983), New York: Oxford University Press, New York · Zbl 0511.53076
[42] Cutler, C.; Kennefick, D.; Poisson, E., Phys. Rev. D, 50, 3816 (1994) · doi:10.1103/PhysRevD.50.3816
[43] M. Maggiore, Gravitational Waves, Vol. 1, Theory and Experiment (Oxford University Press, 2007).
[44] Lousto, C. O.; Price, R. H., Phys. Rev. D, 55, 2124 (1997) · doi:10.1103/PhysRevD.55.2124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.