×

Stability analysis of combustion waves for competitive exothermic reactions using Evans function. (English) Zbl 1480.80017

Summary: We consider travelling wave solutions of a reaction-diffusion system corresponding to an adiabatic two-step competitive exothermic reaction scheme. In such a scheme, a combustion process is assumed to be lumped into two different exothermic reactions. Although the rate constants of the reactions are distinct, both reactions occur simultaneously and feed on the same reactant. The travelling wave solutions are obtained via the shooting-relaxation method. The linear stability analysis is conducted using the Evans function technique and the compound matrix method. Further, threshold values of parameters corresponding to Hopf points are established. It is shown that the system exhibits pulsating behaviour when the parameter values are greater than the threshold values. The onset of instability is found for a broad range of parameter values. Two different numerical methods are then used to obtain solutions from the governing partial differential equations to validate the results.

MSC:

80A25 Combustion
35C07 Traveling wave solutions
35K40 Second-order parabolic systems
35K58 Semilinear parabolic equations
74H55 Stability of dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Hmaidi, A.; McIntosh, A. C.; Brindley, J., A mathematical model of hotspot condensed phase ignition in the presence of a competitive endothermic reaction, Combust. Theory Model., 14, 6, 893-920 (2010) · Zbl 1238.80004
[2] Sharples, J. J.; Sidhu, H. S.; McIntosh, A. C.; Brindley, J.; Gubernov, V. V., Analysis of combustion waves arising in the presence of a competitive endothermic reaction, IMA J. Appl. Math., 77, 1, 18-31 (2012) · Zbl 1242.35145
[3] Gubernov, V. V.; Sharples, J. J.; Sidhu, H. S.; McIntosh, A. C.; Brindley, J., Properties of combustion waves in the model with competitive exo- and endothermic reactions, J. Math. Chem., 50, 8, 2130-2140 (2012) · Zbl 1306.92079
[4] Gubernov, V. V.; Kolobov, A. V.; Polezhaev, A. A.; Sidhu, H. S.; McIntosh, A. C.; Brindley, J., Stabilization of combustion wave through the competitive endothermic reaction, Proc. R. Soc. A, R. Soc., 471, 2180, 20150293 (2015) · Zbl 1371.80033
[5] Martirosyan, N. A.; Dolukhanyan, S. K.; Merzhanov, A. G., Experimental observation of the nonuniqueness of stationary combustion in systems with parallel reactions, Combust. Explos. Shock, 19, 6, 711-712 (1983)
[6] Martirosyan, N. A.; Dolukhanyan, S. K.; Merzhanov, A. G., Nonuniqueness of stationary states in combustion of mixtures of zirconium and soot powders in hydrogen, Combust. Explos. Shock, 19, 5, 569-571 (1983)
[7] Merzhanov, A. G., Combustion and explosion processes in physical chemistry and technology of inorganic materials, ChemInform., 34, 40, 289-310 (2003)
[8] Makino, A., Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis (SHS) process, Prog. Energy Combust. Sci., 27, 1, 1-74 (2001)
[9] Mercer, G. N.; Weber, R. O.; Sidhu, H. S., An oscillatory route to extinction for solid fuel combustion waves due to heat losses, Proc. R. Soc. A R. Soc., 454, 2015-2022 (1998) · Zbl 0926.65087
[10] A.P. Amosov, D.I. Andriyanov, A.R. Samboruk, D.M. Davydov, SHS of porous cermets from TI-B-C preforms, in: Proceedings of the XII International Symposium on Self-propagating High-Temperature Synthesis 21-24 October 2013, South Padre Island, Texas, USA 267, pp. 267-268.; A.P. Amosov, D.I. Andriyanov, A.R. Samboruk, D.M. Davydov, SHS of porous cermets from TI-B-C preforms, in: Proceedings of the XII International Symposium on Self-propagating High-Temperature Synthesis 21-24 October 2013, South Padre Island, Texas, USA 267, pp. 267-268.
[11] Walia, S.; Weber, R.; Latham, K.; Petersen, P.; Abrahamson, J. T.; Strano, M. S.; Kalantar-zadeh, K., Oscillatory thermopower waves based on BI2TE3 films, Adv. Funct. Mater., 21, 11, 2072-2079 (2011)
[12] Merzhanov, A. G.; Rumanov, E. N., Physics of reaction waves, Rev. Mod. Phys., 71, 4, 1173-1211 (1999)
[13] Jomaas, G.; Law, C. K., Observation and regime classification of pulsation patterns in expanding spherical flames, Phys. Fluids, 22, 12, 124102 (2010)
[14] Towers, I. N.; Gubernov, V. V.; Kolobov, A. V.; Polezhaev, A. V.; Sidhu, H. S., Bistability of flame propagation in a model with competing exothermic reactions, Proc. R. Soc. A R. Soc., 469, 2158, 20130315 (2013)
[15] Huang, Z.; Sidhu, H. S.; Towers, I. N.; Jovanoski, Z.; Gubernov, V. V., Properties of combustion waves in a model with competitive exothermicreactions, J. Math. Chem., 55, 1187-1201 (2017) · Zbl 1372.92125
[16] Huang, Z.; Sidhu, H. S.; Towers, I.; Jovanoski, Z.; Gubernov, V. V., Reaction waves in solid fuels for adiabatic competitive exothermic reactions, ANZIAM J(E), 56, C148-C162 (2015)
[17] Huang, Z.; Sidhu, H. S.; Towers, I.; Jovanoski, Z.; Gubernov, V. V., Nonadiabatic combustion waves in a two-step competitive exothermic-reaction model, ANZIAM J(E), 57, 14-31 (2016)
[18] Evans, J. W., Nerve axon equations: III. stability of the nerve impulse, Ind. Univ. Math. J., 22, 6, 577-593 (1972) · Zbl 0245.92004
[19] Gubernov, V. V.; Mercer, G. N.; Sidhu, H. S.; Weber, R. O., Evans function stability of combustion waves, SIAM J. Appl. Math., 63, 4, 1259-1275 (2003) · Zbl 1024.35044
[20] Gubernov, V. V.; Mercer, G. N.; Sidhu, H. S.; Weber, R. O., Evans function stability of non-adiabatic combustion waves, Proc. R. Soc. A, R Soc., 460, 2048, 2415-2435 (2004) · Zbl 1063.80008
[21] Gubernov, V. V.; Sidhu, H. S.; Mercer, G., The effect of ambient temperature on the propagation of nonadiabatic combustion waves, J. Math. Chem., 37, 2, 149-162 (2005) · Zbl 1073.35520
[22] Zeldovich, Y. B.; Barenblatt, G. I.; Librovich, V. B.; Makhviladze, G. M., The Mathematical Theory of Combustion and Explosions (1985), Consultants Bureau: Consultants Bureau New York, New York
[23] Jain, S.; Yehia, O.; Qiao, L., Flame speed enhancement of solid nitrocellulose monopropellant coupled with graphite at microscales, J. Appl. Phys., 119, 9, 094904 (2016)
[24] Sun, C. J.; Sung, C. J.; He, L.; Law, C. K., Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters, Combust. Flame, 118, 1, 108-128 (1999)
[25] Schiesser, W. E., The Numerical Method of Lines : Integration of Partial Differential Equations (1991), Academic Press: Academic Press San Diego, San Diego · Zbl 0763.65076
[26] Flexpdehttp://www.pdesolutions.com; Flexpdehttp://www.pdesolutions.com
[27] Volpert, A. I.; Volpert, V. A.; Volpert, V. A., Travelling wave solutions of parabolic systems, proceedings of the American Mathematical Society (1994), Providence: Providence Rhode Island · Zbl 0835.35048
[28] Sandstede, B., Stability of travelling waves, Handbook of Dynamical Systems 2, 983-1055 (2002), Elsevier: Elsevier North Holland · Zbl 1056.35022
[29] Pego, R. L.; Smereka, P.; Weinstein, M. I., Oscillatory instability of traveling waves for a KDV-burgers equation, Phys. D: Nonlinear Phenom., 67, 1-3, 45-65 (1993) · Zbl 0787.76031
[30] Afendikov, A. L.; Bridges, T. J., Instability of the Hocking-Stewartson pulse and its implications for three-dimensional poiseuille flow, Proc. R. Soc. A, R Soc., 457, 2006, 257-272 (2001) · Zbl 0984.76022
[31] Ng, B. S.; Reid, W. H., An initial value method for eigenvalue problems using compound matrices, J. Comput. Phys., 30, 1, 125-136 (1979) · Zbl 0408.65061
[32] Ng, B. S.; Reid, W. H., The compound matrix method for ordinary differential systems, J. Comput. Phys., 58, 2, 209-228 (1985) · Zbl 0576.34014
[33] Drury, L. O.C., Numerical solution of Orr-Sommerfeld-type equations, J. Comput. Phys., 37, 1, 133-139 (1980) · Zbl 0448.65057
[34] Humpherys, J.; Zumbrun, K., An efficient shooting algorithm for evans function calculations in large systems, Phys. D: Nonlinear Phenomena, 220, 2, 116-126 (2006) · Zbl 1101.65082
[35] Bridges, T. J.; Derks, G., The symplectic evans matrix, and the instability of solitary waves and fronts, Arch. Ration. Mech. Anal, 156, 1, 1-87 (2001) · Zbl 0981.37030
[36] Allen, L.; Bridges, T. J., Numerical exterior algebra and the compound matrix method, Numer. Math., 92, 2, 197-232 (2002) · Zbl 1012.65079
[37] Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable (1979), McGraw-Hill: McGraw-Hill New York · Zbl 0395.30001
[38] Clavin, P.; Fife, P.; Nicolaenko, B., Multiplicity and related phenomena in competing reaction flames, SIAM J. Appl. Math., 47, 2, 296-331 (1987) · Zbl 0645.76073
[39] Hastings, S., Multiple travelling waves in a combustion model, SIAM J. Math. Anal., 19, 6, 1365-1371 (1988) · Zbl 0729.35060
[40] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (Vol. 112) (2013), Springer Science & Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.