×

Competitive double diffusive convection in a Kelvin-Voigt fluid of order one. (English) Zbl 1480.76051

Summary: We present a model for convection in a Kelvin-Voigt fluid of order one when the layer is heated from below and simultaneously salted from below, a problem of competitive double diffusion since heating from below promotes instability, but salting from below is stabilizing. The instability surface threshold is calculated and this has a complex shape. The Kelvin-Voigt parameters play an important role in acting as stabilizing agents when the convection is of oscillatory type. Quantitative values of the instability surface are displayed. The nonlinear stability problem is briefly addressed.

MSC:

76E06 Convection in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76R10 Free convection
76R50 Diffusion
76A10 Viscoelastic fluids
80A19 Diffusive and convective heat and mass transfer, heat flow

References:

[1] Haavisto, S., Koponen, A.I., Salmela, J.: New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography. Front. Chem. 2 (2014). doi:10.3389/fchem.2014.00027
[2] Straughan, B., Green-Naghdi fluid with non-thermal equilibrium effects, Proc. R. Soc. Lond. A, 466, 2021-2032 (2010) · Zbl 1253.80009
[3] Amendola, G.; Fabrizio, M., Thermal convection in a simple fluid with fading memory, J. Math. Anal. Appl., 366, 444-459 (2010) · Zbl 1379.80004
[4] Amendola, G.; Fabrizio, M.; Golden, M.; Lazzari, B., Free energies and asymptotic behaviour for incompressible viscoelastic fluids, Appl. Anal., 88, 789-805 (2009) · Zbl 1170.76007
[5] Anand, V.; Joshua David, JR; Christov, IC, Non-Newtonian fluid structure interactions: static response of a microchannel due to internal flow of a power law fluid, Int. J. Non Newtonian Fluid Mech., 264, 67-72 (2019)
[6] Anand, V.; Christov, IC, Transient compressible flow in a compliant viscoelastic tube, Phys. Fluids, 32, 112014 (2020)
[7] Anand, V.; Christov, IC, Revisiting steady viscous flow of a generalized Newtonian fluid through a slender elastic tube using shell theory, Z. Angew. Math. Mech., 101, e201900309 (2021) · Zbl 07812979
[8] Anh, CT; Nguyet, TM, Time optimal control of the 3d Navier-Stokes-Voigt equations, Appl. Math. Optim., 79, 397-426 (2019) · Zbl 1415.76217
[9] Christov, IC; Christov, CI, Stress retardation versus stress relaxation in linear viscoelasticity, Mech. Res. Commun., 72, 59-63 (2016)
[10] Fabrizio, M.; Lazzari, B.; Nibbi, R., Aymptotic stability in linear viscoelasticity with supplies, J. Math. Anal. Appl., 427, 629-645 (2015) · Zbl 1459.74032
[11] Franchi, F.; Lazzari, B.; Nibbi, R., Uniqueness and stability results for nonlinear Johnson-Segalman viscoelasticity and related models, Discret. Cont. Dyn. Syst. B, 19, 2111-2132 (2014) · Zbl 1302.76009
[12] Franchi, F.; Lazzari, B.; Nibbi, R., Mathematical models for the non-isothermal Johnson-Segalman viscoelasticity in porous media: stability and wave propagation, Math. Methods Appl. Sci., 38, 4075-4087 (2015) · Zbl 1333.76010
[13] Franchi, F.; Lazzari, B.; Nibbi, R., The Johnson-Segalman model versus a non-ideal MHD theory, Phys. Lett. A, 379, 1431-1436 (2015) · Zbl 1349.76890
[14] Franchi, F.; Lazzari, B.; Nibbi, R., Viscoelastic type magmetic effects and self-gravity on the propagation of MHD waves, Meccanica, 55, 2199-2214 (2020) · Zbl 1483.76007
[15] Gatti, S.; Giorgi, C.; Pata, V., Navier-Stokes limit of Jeffreys type flows, Physica D, 203, 55-79 (2005) · Zbl 1070.35022
[16] Jordan, PM; Puri, A.; Boros, G., On a new exact solution to Stokes’ first problem for Maxwell fluids, Int. J. Nonlinear Mech., 39, 1371-1377 (2004) · Zbl 1348.76024
[17] Jordan, PM; Puri, A., Revisiting Stokes’ first problem for Maxwell fluids, Q. J. Mech. Appl. Math., 58, 213-227 (2005) · Zbl 1072.76006
[18] Payne, LE; Straughan, B., Convergence for the equations of a Maxwell fluid, Stud. Appl. Math., 103, 267-278 (1999) · Zbl 1136.76310
[19] Yang, R.; Christov, IC; Griffiths, IM; Ramon, GZ, Time-averaged transport in oscillatory flow of a viscoelastic fluid, Phys. Rev. Fluids, 5, 094501 (2020)
[20] Avalos, GG; Rivera, JM; Villagram, OA, Stability in thermoviscoelasticity with second sound, Appl. Math. Optim., 82, 135-150 (2020) · Zbl 1443.74200
[21] Chirita, S.; Zampoli, V., On the forward and backward in time problems in the Kelvin-Voigt thermoelastic materials, Mech. Res. Commun., 68, 25-30 (2015)
[22] El Arwadi, T., Youssef, W.: On the stabilization of the Bresse beam with Kelvin-Voigt damping. Appl. Math. Optim. 83 (2021). doi:10.1007/s00245-019-09611-z · Zbl 1486.65166
[23] Layton, WJ; Rebholz, LG, On relaxation times in the Navier-Stokes-Voigt model, Int. J. Comput. Fluid Dyn., 27, 184-187 (2013) · Zbl 07508633
[24] Rivera, JM; Racke, R., Transmission problems in (thermo) viscoelasticity with Kelvin-Voigt damping: non-exponential, strong and polynomial stability, SIAM J. Math. Anal., 49, 3741-3765 (2017) · Zbl 1391.35057
[25] Oskolkov, AP, Initial-boundary value problems for the equations of Kelvin-Voigt fluids and Oldroyd fluids, Proc. Steklov Inst. Math., 179, 126-164 (1988) · Zbl 0674.76004
[26] Oskolkov, AP, Nonlocal problems for the equations of motion of Kelvin-Voigt fluids, J. Math. Sci., 75, 2058-2078 (1995) · Zbl 0830.76003
[27] Sukacheva, TG; Matveeva, OP, On a homogeneous model of the non-compressible viscoelastic Kelvin-Voigt fluid of the non-zero order, J. Samara State Tech. Univ. Ser. Phys. Math. Sci., 5, 33-41 (2010) · Zbl 1449.35457
[28] Matveeva, OP, Model of thermoconvection of incompressible viscoelastic fluid of non-zero order-computational experiment, Bull. South Ural State Tech. Univ., Ser. Math. Model. Program., 6, 134-138 (2013) · Zbl 1413.76011
[29] Sukacheva, TG; Kondyukov, AO, On a class of Sobolev type equations, Bull. South Ural State Tech. Univ., Ser. Math. Model. Program., 7, 5-21 (2014) · Zbl 1333.35086
[30] Oskolkov, AP; Shadiev, R., Towards a theory of global solvability on \([0,\infty )\) of initial-boundary value problems for the equations of motion of Oldroyd and Kelvin - Voigt fluids, J. Math. Sci., 68, 240-253 (1994) · Zbl 0850.76039
[31] Christov, I.C., Jordan, P.M.: Maxwell’s “other” equations. Blog, The Royal Society (2015). https://royalsociety.org/blog/2015/09/maxwells-other-equations
[32] Barletta, A.; Nield, DA, Thermosolutal convective instability and viscous dissipation effect in a fluid-saturated porous medium, Int. J. Heat Mass Transf., 54, 1641-1648 (2011) · Zbl 1211.80002
[33] Capone, F.; Gentile, M.; Hill, AA, Double diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with throughflow, Int. J. Heat Mass Transf, 54, 1622-1626 (2011) · Zbl 1211.80006
[34] Galdi, GP; Payne, LE; Proctor, MRE; Straughan, B., Convection in thawing subsea permafrost, Proc. R. Soc. Lond. A, 414, 83-102 (1987) · Zbl 0645.76055
[35] Gentile, M.; Straughan, B., Hyperbolic diffusion with Christov-Morro theory, Math. Comput. Simul., 127, 94-100 (2016) · Zbl 1520.76083
[36] Harfash, AJ; Hill, AA, Simulation of three dimensional double diffusive throughflow in internally heated anisotropic porous media, Int. J. Heat Mass Transf., 72, 609-615 (2014)
[37] Nield, DA, The thermohaline Rayleigh-Jeffreys problem, J. Fluid Mech., 29, 545-558 (1967)
[38] Matta, A.; Narayana, P.; Hill, AA, Double diffusive Hadley-Prats flow in a horizontal layer with a concentration based internal heat source, J. Math. Anal. Appl., 452, 1005-1018 (2017) · Zbl 1371.80020
[39] Mulone, G., On the nonlinear stability of a fluid layer of a mixture heated and salted from below, Continuum Mech. Thermodyn., 6, 161-184 (1994) · Zbl 0809.76034
[40] Payne, LE; Song, JC; Straughan, B., Double diffusive penetrative convection: thawing subsea permafrost, Int. J. Eng. Sci., 103, 797-809 (1999) · Zbl 0667.76137
[41] Straughan, B., Tipping points in Cattaneo-Christov thermohaline convection, Proc. R. Soc. Lond. A, 467, 7-18 (2011) · Zbl 1219.76049
[42] Straughan, B., Anisotropic inertia effect in microfluidic porous thermosolutal convection, Microfluidics Nanofluidics, 16, 361-368 (2014)
[43] Straughan, B., Heated and salted below porous convection with generalized temperature and solute boundary conditions, Trans. Porous Media, 131, 617-631 (2020)
[44] Straughan, B.: Convection with Local Thermal Non-equilibrium and Microfluidic Effects, vol. 32 of Advances in Mechanics and Mathematics Series. Springer, Cham (2015) · Zbl 1325.76005
[45] Straughan, B.; Hutter, K., A priori bounds and structural stability for double diffusive convection incorporating the Soret effect, Proc. R. Soc. Lond A, 455, 767-777 (1999) · Zbl 0935.76084
[46] Joseph, DD, Global stability of the conduction diffusion solution, Arch. Ration. Mech. Anal., 36, 285-292 (1970) · Zbl 0202.26602
[47] Straughan, B.: Thermosolutal convection with a Navier-Stokes-Voigt fluid. Appl. Math. Optim. 83 (2021). doi:10.1007/s00245-020-09719-7 · Zbl 1475.76042
[48] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1981), New York: Dover, New York · Zbl 0142.44103
[49] Straughan, B.: The Energy Method, Stability, and Nonlinear Convection, 2nd edn, vol. 91 of Appl. Math. Sci. Springer, New York (2004) · Zbl 1032.76001
[50] Greco, R.; Marano, GC, Identification of parameters of Maxwell and Kelvin-Voigt generalized models for fluid viscous dampers, J. Vib. Control, 21, 260-274 (2015)
[51] Christov, CI, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction, Mech. Res. Commun., 36, 481-486 (2009) · Zbl 1258.80001
[52] Jordan, PM; Passerella, F.; Tibullo, V., Poroacoustic waves under a mixture—theoretic based reformulation of the Jordan-Darcy-Cattaneo model, Wave Motion, 71, 82-92 (2017) · Zbl 1461.35189
[53] Gidde, RR; Pawar, PM, On the effect of viscoelastic characterizations on polymers and on performance of micropump, Adv. Mech. Eng., 9, 1-12 (2017)
[54] Jayabal, H.; Dingari, NN; Rai, B., A linear viscoelastic model to understand the skin mechanical behaviour and for cosmetic formulation design, Int. J. Cosmetic Sci., 41, 292-299 (2019)
[55] Jozwiak, B., Orczykowska, M., Dziubinski, M.: Fractional generalizations of Maxwell and Kelvin-Voigt models for biopolymer characterization. PLoS ONE 15 (2015). doi:10.1371/journal.pone.0143090
[56] Erdel, F.; Baum, M.; Rippe, K., The viscoelastic properties of chromatin and the nucleoplasm revealed by scale-dependent protein mobility, J. Phys., 27, 064115 (2015)
[57] Askarian, A.R., Permoon, M.R., Shakouri, M.: Vibration analysis of pipes conveying fluid resting on a fractional Kelvin-Voigt viscoelastic foundation with general boundary conditions. Int. J. Mech. Sci. 179 (2020). doi:10.1016/j.ijmecsci.2020.105702
[58] Lewandowski, R.; Chorazyczewski, B., Identification of the parameters of the Kelvin-Voigt and the Maxwell models, used to modelling viscoelastic dampers, Comput. Struct., 88, 1-17 (2010)
[59] Xu, ZD; Wang, DX; Shi, CF, Model, tests and application design for viscous dampers, J. Vib. Control, 17, 1359-1370 (2010)
[60] Pearlstein, AJ, Effect of rotation on the stability of a doubly diffusive fluid layer, J. Fluid Mech., 103, 389-412 (1981) · Zbl 0464.76040
[61] Pearlstein, AJ; Harris, RM; Terrones, G., The onset of convective instability in a triply diffusive fluid layer, J. Fluid Mech., 202, 443-465 (1989) · Zbl 0666.76066
[62] Straughan, B.; Walker, DW, Multi-component diffusion and penetrative convection, Fluid Dyn. Res., 19, 77-89 (1997)
[63] Falsaperla, P.; Mulone, G.; Straughan, B., Bidispersive inclined convection, Proc. R. Soc. Lond. A, 472, 20160480 (2016) · Zbl 1371.80017
[64] Straughan, B.: Instability thresholds for thermal convection in a Kelvin-Voigt fluid of variable order. Rend. Circ. Matem. Palermo 70 (2021). doi:10.1007/s12215-020-00588-1 · Zbl 1490.76098
[65] Rionero, S.: Hopf bifurcations in quaternary dynamical systems of rotating thermofluid mixtures, driven by spectrum characteristics. Ricerche di Matem. 70 (2021). doi:10.1007/s11587-020-00514-8 · Zbl 1467.76028
[66] Straughan, B., Global stability for convection induced by absorption of radiation, Dyn. Atmos. Oceans, 35, 351-361 (2002)
[67] Abdullah, AA; Fallatah, HM; Lindsay, KA; Oreijah, MM, Measurements of the performance of the experimental salt-gradient solar pond at Makkah one year after commissioning, Solar Energy, 150, 212-219 (2017)
[68] Jakeman, E.; Hurle, DTJ, Thermal oscillations and their effect on solidification processes, Rev. Phys. Technol., 3, 3-30 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.