×

Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis. (English) Zbl 1480.62098

Summary: Improving estimation efficiency for regression coefficients is an important issue in the analysis of longitudinal data, which involves estimating the covariance matrix of the within-subject errors. In the balanced or nearly balanced setting, we can also regard the covariance matrix of the dependent errors as the bivariate covariance function evaluated at specific time points. In this paper, we compare the performance of the proposed regularized-covariance-function-based estimator and the conventional high-dimensional covariance matrix estimator of the within-subject errors. It shows that when the number \(p\) of the time points in each subject is large enough compared to the number \(n\) of the subjects, i.e., \( p \gg n^{1 / 4} \log n\), the estimation errors of the high-dimensional covariance matrix will be accumulated, therefore the error bound of the proposed regularized-covariance-function-based estimator will be smaller than that of the high-dimensional covariance matrix estimator in Frobenius norm. We also assess the performance of these two estimators for the incomplete longitudinal data. All the comparisons and theoretical results are illustrated using both simulated and real data.

MSC:

62G08 Nonparametric regression and quantile regression
62H12 Estimation in multivariate analysis
62G05 Nonparametric estimation
Full Text: DOI

References:

[1] Cai, T.; Yuan, M., Nonparametric Covariance Function Estimation for Functional and Longitudinal DataTechnical Report (2010)
[2] Diggle, P. J.; Heagerty, P.; Liang, K. Y.; Zeger, S. L., Analysis of Longitudinal Data (2002), Oxford University Press: Oxford University Press New York
[3] Fan, J.; Huang, T.; Li, R., Analysis of longitudinal data with semiparametric estimation of covariance function, J. Amer. Statist. Assoc., 102, 632-641 (2007) · Zbl 1172.62323
[4] Fan, J.; Wu, Y., Semiparametric estimation of covariance matrixes for longitudinal data, J. Amer. Statist. Assoc., 103, 1520-1533 (2008) · Zbl 1286.62030
[5] Hall, P.; Müller, H. G.; Wang, J. L., Properties of principal component methods for functional and longitudinal data analysis, Ann. Statist., 34, 1493-1517 (2006) · Zbl 1113.62073
[6] Hall, P.; Müller, H. G.; Yao, F., Modelling sparse generalized longitudinal observations with latent Gaussian processes, J. R. Stat. Soc. Ser. B Stat. Methodol., 70, 703-723 (2008) · Zbl 05563365
[7] Jia, S.; Zhang, C.; Wu, H., Efficient semiparametric regression for longitudinal data with regularised estimation of error covariance function, J. Nonparametr. Stat., 31, 867-886 (2019) · Zbl 1437.62144
[8] Li, Y., Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation, Biometrika, 98, 355-370 (2011) · Zbl 1215.62042
[9] Lin, X.; Carroll, R. J., Semiparametric regression for clustered data using generalized estimating equations, J. Amer. Statist. Assoc., 96, 1045-1056 (2001) · Zbl 1072.62566
[10] Milton, A.; Irene, A. S., Handbook of Mathematical Functions with Formulas (1972), Graphs, and Mathematical Tables: Graphs, and Mathematical Tables New York · Zbl 0543.33001
[11] Pan, J.; MacKenzie, G., On modelling mean-covariance structures in longitidinal studies, Biometrika, 90, 239-244 (2003) · Zbl 1039.62068
[12] Rothman, A. J., Positive definite estimators of large covariance matrices, Biometrika, 99, 733-740 (2012) · Zbl 1437.62595
[13] Rothman, A. J.; Bickel, P. J.; Levina, E.; Zhu, J., Sparse permutation invariant covariance estimation, Electron. J. Stat., 2, 494-515 (2008) · Zbl 1320.62135
[14] Rothman, A. J.; Levina, E.; Zhu, J., Generalized thresholding of large covariance matrices, J. Amer. Statist. Assoc., 104, 177-186 (2009) · Zbl 1388.62170
[15] Wang, N.; Carroll, R. J.; Lin, X., Efficient semiparametric marginal estimation for longitudinal/clustered data, J. Am. Statist. Assoc., 100, 147-157 (2005) · Zbl 1117.62440
[16] Wu, W. B.; Pourahmadi, M., Nonparametric estimation of large covariance matrices of longitudinal data, Biometrika, 90, 831-844 (2003) · Zbl 1436.62347
[17] Wu, H. L.; Zhang, J. T., Local polynomial mixed-effects models for longitudinal data, J. Am. Statist. Assoc., 97, 883-897 (2002) · Zbl 1048.62048
[18] Wu, H. L.; Zhang, J. T., The study of long-term HIV dynamics using semiparametric nonlinear mixed-effects models, Stat. Med., 21, 3655-3675 (2002)
[19] Wu, H. L.; Zhang, J. T., Nonparametric Regression Methods for Longitudinal Data: Mixed-Effects Modeling Approaches (2006), Wiley: Wiley Hoboken · Zbl 1127.62041
[20] Yao, F.; Müller, H. G.; Wang, J. L., Functional data analysis for sparse longitudinal data, J. Amer. Statist. Assoc., 100, 577-590 (2005) · Zbl 1117.62451
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.