×

Hardy-Adams inequalities on \(\mathbb{H}^2 \times \mathbb{R}^{n-2} \). (English) Zbl 1480.46043

Summary: Let \(\mathbb{H}^2\) be the hyperbolic space of dimension 2. Denote by \(M^n=\mathbb{H}^2\times\mathbb{R}^{n-2}\) the product manifold of \(\mathbb{H}^2\) and \(\mathbb{R}^{n-2}\) \( (n\geq 3)\). In this paper we establish some sharp Hardy-Adams inequalities on \(M^n \), though \(M^n\) is not with strictly negative sectional curvature. We also show that the sharp constant in the Poincaré-Sobolev inequality on \(M^n\) coincides with the best Sobolev constant, which is of independent interest.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35J20 Variational methods for second-order elliptic equations

References:

[1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), no. 2, 385-398. · Zbl 0672.31008
[2] L. V. Ahlfors, Möbius Transformations in Several Dimensions, Ordway Professorship Lect. Math., University of Minnesota, Minneapolis, 1981. · Zbl 0517.30001
[3] J.-P. Anker, \( \mathbf{L}}_{p\) Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. (2) 132 (1990), no. 3, 597-628. · Zbl 0741.43009
[4] J.-P. Anker, E. Damek and C. Yacoub, Spherical analysis on harmonic AN groups, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 23 (1996), no. 4, 643-679. · Zbl 0881.22008
[5] T. Aubin, Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. (2) 100 (1976), no. 2, 149-173. · Zbl 0328.46030
[6] A. Baernstein, II, A unified approach to symmetrization, Partial Differential Equations of Elliptic Type (Cortona 1992), Sympos. Math. 35, Cambridge University Press, Cambridge (1994), 47-91. · Zbl 0830.35005
[7] J. Bertrand and K. Sandeep, Adams inequality on Hadamard manifolds, preprint (2020), https://arxiv.org/abs/1809.00879v3.
[8] H. Brezis and M. Marcus, Hardy’s inequalities revisited, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 25 (1997), 217-237. · Zbl 1011.46027
[9] E. B. Davies and N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups, Proc. Lond. Math. Soc. (3) 57 (1988), no. 1, 182-208. · Zbl 0643.30035
[10] I. M. Gelfand, S. G. Gindikin and M. I. Graev, Selected Topics in Integral Geometry, Transl. Math. Monogr. 220, American Mathematical Society, Providence, 2003. · Zbl 1055.53059
[11] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., Academic Press, San Diego, 2000. · Zbl 0981.65001
[12] A. Grigor’yan and M. Noguchi, The heat kernel on hyperbolic space, Bull. Lond. Math. Soc. 30 (1998), no. 6, 643-650. · Zbl 0921.58063
[13] S. Helgason, Groups and geometric analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure Appl. Math. 113, Academic Press, Orlando, 1984. · Zbl 0543.58001
[14] S. Helgason, Geometric Analysis on Symmetric Spaces, 2nd ed., Math. Surveys Monogr. 39, American Mathematical Society, Providence, 2008. · Zbl 1157.43003
[15] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and A. Laptev, A geometrical version of Hardy’s inequality, J. Funct. Anal. 189 (2002), no. 2, 539-548. · Zbl 1012.26011
[16] L. K. Hua, Starting with the Unit Circle, Springer, New York, 1981. · Zbl 0481.43005
[17] V. I. Judovič, Some estimates connected with integral operators and with solutions of elliptic equations (in Russian), Dokl. Akad. Nauk SSSR 138 (1961), 805-808. · Zbl 0144.14501
[18] H. Kozono, T. Sato and H. Wadade, Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J. 55 (2006), no. 6, 1951-1974. · Zbl 1126.46023
[19] N. Lam and G. Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math. 231 (2012), no. 6, 3259-3287. · Zbl 1278.42033
[20] N. Lam and G. Lu, A new approach to sharp Moser-Trudinger and Adams type inequalities: A rearrangement-free argument, J. Differential Equations 255 (2013), no. 3, 298-325. · Zbl 1294.46034
[21] J. Li, G. Lu and Q. Yang, Fourier analysis and optimal Hardy-Adams inequalities on hyperbolic spaces of any even dimension, Adv. Math. 333 (2018), 350-385. · Zbl 1402.46025
[22] J. Li, G. Lu and Q. Yang, Sharp Adams and Hardy-Adams inequalities of any fractional order on hyperbolic spaces of all dimensions, Trans. Amer. Math. Soc. 373 (2020), no. 5, 3483-3513. · Zbl 1451.46036
[23] C. Liu and L. Peng, Generalized Helgason-Fourier transforms associated to variants of the Laplace-Beltrami operators on the unit ball in \mathbb{R}^n, Indiana Univ. Math. J. 58 (2009), no. 3, 1457-1491. · Zbl 1175.43006
[24] G. Lu and H. Tang, Best constants for Moser-Trudinger inequalities on high dimensional hyperbolic spaces, Adv. Nonlinear Stud. 13 (2013), no. 4, 1035-1052. · Zbl 1294.46035
[25] G. Lu and H. Tang, Sharp Moser-Trudinger inequalities on hyperbolic spaces with exact growth condition, J. Geom. Anal. 26 (2016), no. 2, 837-857. · Zbl 1356.46031
[26] G. Lu and Q. Yang, A sharp Trudinger-Moser inequality on any bounded and convex planar domain, Calc. Var. Partial Differential Equations 55 (2016), no. 6, Article No. 153. · Zbl 1369.46029
[27] G. Lu and Q. Yang, Sharp Hardy-Adams inequalities for bi-Laplacian on hyperbolic space of dimension four, Adv. Math. 319 (2017), 567-598. · Zbl 1384.46026
[28] G. Lu and Q. Yang, Paneitz operators on hyperbolic spaces and high order Hardy-Sobolev-Maz’ya inequalities on half spaces, Amer. J. Math. 141 (2019), no. 6, 1777-1816. · Zbl 1431.26013
[29] G. Lu and Q. Yang, Green’s functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy-Sobolev-Maz’ya inequalities on half spaces, preprint (2019), https://arxiv.org/abs/1903.10365.
[30] G. Mancini, K. Sandeep and C. Tintarev, Trudinger-Moser inequality in the hyperbolic space \(\mathbb{H}}^{N\), Adv. Nonlinear Anal. 2 (2013), no. 3, 309-324. · Zbl 1274.35435
[31] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092. · Zbl 0203.43701
[32] R. O’Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142. · Zbl 0178.47701
[33] S. I. Pohožaev, On the eigenfunctions of the equation \Delta u+\lambda f(u)=0 (in Russian), Dokl. Akad. Nauk SSSR 165 (1965), 36-39. · Zbl 0141.30202
[34] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. · Zbl 0353.46018
[35] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. · Zbl 0163.36402
[36] G. Wang and D. Ye, A Hardy-Moser-Trudinger inequality, Adv. Math. 230 (2012), no. 1, 294-320. · Zbl 1241.35007
[37] Q. Yang, D. Su and Y. Kong, Sharp Moser-Trudinger inequalities on Riemannian manifolds with negative curvature, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 459-471. · Zbl 1355.46044
[38] Y. Yang, Trudinger-Moser inequalities on complete noncompact Riemannian manifolds, J. Funct. Anal. 263 (2012), no. 7, 1894-1938. · Zbl 1256.53034
[39] C. Zhang, Trudinger-Moser inequalities in fractional Sobolev-Slobodeckij spaces and multiplicity of weak solutions to the fractional-Laplacian equation, Adv. Nonlinear Stud. 19 (2019), no. 1, 197-217. · Zbl 1415.35288
[40] C. Zhang and L. Chen, Concentration-compactness principle of singular Trudinger-Moser inequalities in \mathbb{R}^n and n-Laplace equations, Adv. Nonlinear Stud. 18 (2018), no. 3, 567-585. · Zbl 1397.35117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.