×

Discontinuous perturbations of nonhomogeneous strongly-singular Kirchhoff problems. (English) Zbl 1480.35228

The authors study the quasilinear Kirchhoff problem \begin{align*} \begin{cases} -M \left(\displaystyle \int_\Omega \Phi(|\nabla u|)\,\text{d}x\right) \Delta_\Phi u=\mu b(x)u^{-\delta} +\lambda f(x,u) &\text{in }\Omega,\\ u>0&\text{in } \Omega,\\ u=0 &\text{on }\partial\Omega, \end{cases} \end{align*} where \(M\colon [0,\infty)\to [0,\infty)\) is a continuous function, \(f\colon \Omega \times (0,\infty)\to (0,\infty)\) is of Heaviside type, \(0<b\in L^1(\Omega)\), \(\delta>1\), \(\lambda,\mu>0\) are real parameters and \( \Delta_\Phi \) denotes the \(\Phi\)-Laplacian. The authors present equivalent conditions for the existence of three solutions to the problem above.

MSC:

35J62 Quasilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35J75 Singular elliptic equations
35J20 Variational methods for second-order elliptic equations

References:

[1] Adams, R.A.: Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975) · Zbl 0314.46030
[2] Ambrosetti, A.; Arcoya, D., Remarks on non homogeneous elliptic Kirchhoff equations, Nonlinear Differ. Equ. Appl., 23, 57 (2016) · Zbl 1388.35042 · doi:10.1007/s00030-016-0410-1
[3] Cammaroto, F.; Vilasi, L., Multiple solutions for a Kirchhoff-type problem involving the \(p(x)\)-Laplacian operator, Nonlinear Anal. Theory Methods Appl., 74, 5, 1841-1852 (2011) · Zbl 1213.35312 · doi:10.1016/j.na.2010.10.057
[4] Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications. Springer Monographs in Mathematics. Springer, New York (2007) · Zbl 1109.35004
[5] Chang, KC, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80, 1, 102-129 (1981) · Zbl 0487.49027 · doi:10.1016/0022-247X(81)90095-0
[6] Cianchi, A., Maz’ya, V.: Second-order two-sided estimates in nonlinear elliptic problems. Arch. Rational Mech. Anal. 229, 569-599 (2018) · Zbl 1398.35078
[7] Cianchi, A.; Maz’ya, V., Optimal second-order regularity for the \(p\)-Laplace system, J. Math. Pures Appl., 132, 41-78 (2019) · Zbl 1437.35404 · doi:10.1016/j.matpur.2019.02.015
[8] Clarke, FH, Optimization and Nonsmooth Analysis (1990), Philadelphia: SIAM, Philadelphia · Zbl 0696.49002 · doi:10.1137/1.9781611971309
[9] Corrêa, FJSA; Gonçalves, JV, Sublinear elliptic systems with discontinuous nonlinearities, Appl. Anal., 44, 37-50 (1990) · Zbl 0773.35018 · doi:10.1080/00036819208840067
[10] Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M., Lebesgue and Sobolev Spaces with Variable Exponents (2011), Heidelberg: Springer, Heidelberg · Zbl 1222.46002 · doi:10.1007/978-3-642-18363-8
[11] Fang, F.; Tan, Z., Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting, Acta Math. Appl. Sin. Engl. Ser., 33, 2, 287-296 (2017) · Zbl 1370.35099 · doi:10.1007/s10255-017-0659-0
[12] Faraci, F.; Smyrlis, G., Three solutions for a class of higher dimensional singular problems, NoDEA Nonlinear Differ. Equ. Appl., 23, 14, 23-45 (2016) · Zbl 1458.35186
[13] Faraci, F., Smyrlis, G.: Three solutions for a singular quasilinear elliptic problem. Proc. Edinb. Math. Soc. 62(1), 179-196 (2019) · Zbl 1421.35131
[14] Gonçalves, JV; Carvalho, MLM; Santos, CA, Quasilinear elliptic systems with convex-concave singular terms and \(\Phi \)-Laplacian operator, Differ. Integr. Equ., 31, 2, 231-256 (2018) · Zbl 1413.35162
[15] Gonçalves, JV; Carvalho, ML; Santos, CA, About positive \(W_{loc}^{1,\Phi }(\Omega )\)-solutions to quasilinear elliptic problems with singular semilinear term, Topol. Methods Nonlinear Anal., 53, 2, 491-517 (2019) · Zbl 1433.35123
[16] Guedda, M.; Véron, L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13, 8, 879-902 (1989) · Zbl 0714.35032 · doi:10.1016/0362-546X(89)90020-5
[17] Krasnosels’kii, MA; Rutickii, JB, Convex Functions and Orlicz Spaces (1961), Groningen: Noordhoff Ltd., Groningen · Zbl 0095.09103
[18] Kufner, A.; John, O.; Fŭcík, S., Function spaces, (1977), Pragu, Leyden: Academia Noordhoff International Publishing, Pragu, Leyden · Zbl 0364.46022
[19] Lazer, AC; McKenna, PJ, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111, 3, 721-730 (1991) · Zbl 0727.35057 · doi:10.1090/S0002-9939-1991-1037213-9
[20] Le, VK; Motreanu, D.; Motreanu, VV, On a non-smooth eigenvalue problem in Orlicz-Sobolev spaces, Appl. Anal., 89, 2, 229-242 (2010) · Zbl 1186.35124 · doi:10.1080/00036810802428987
[21] Liang, S.; Pucci, P.; Zhang, B., Multiple solutions for critical Choquard-Kirchhoff type equations, Adv. Nonlinear Anal., 10, 1, 400-419 (2021) · Zbl 1465.35215 · doi:10.1515/anona-2020-0119
[22] Lou, H., On singular sets of local solutions to \(p\)-Laplace equations, Chin. Ann. Math., 29B, 521-530 (2008) · Zbl 1153.35044 · doi:10.1007/s11401-007-0312-y
[23] Marano, SA; Motreanu, D., On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal., 48, 37-52 (2002) · Zbl 1014.49004 · doi:10.1016/S0362-546X(00)00171-1
[24] Mingione, G., Rădulescu, V.: Recent developments in problems with nonstandard growth and nonuniform ellipticity. J. Math. Anal. Appl. 501, 125197 (2021) · Zbl 1467.49003
[25] Mohammed, A., Positive solutions of the \(p\)-Laplace equation with singular nonlinearity, J. Math. Anal. Appl., 352, 1, 234-245 (2009) · Zbl 1168.35014 · doi:10.1016/j.jmaa.2008.06.018
[26] Mukherjee ,T., Pucci, P., Xiang, M.: Combined effects of singular and exponential nonlinearities in fractional Kirchhoff problems. Discrete Contin. Dyn. Syst.. doi:10.3934/dcds.2021111. · Zbl 1483.35094
[27] Rao, MM; Ren, ZD, Theory of Orlicz Spaces (1991), New York: Marcel Dekker Inc, New York · Zbl 0724.46032
[28] Ricceri, B., Sublevel sets and global minima of coercive functionals and local minima of their perturbations, J. Nonlinear Convex Anal., 5, 2, 157-168 (2004) · Zbl 1083.49004
[29] Ricceri, B., A further three critical points theorem, Nonlinear Anal., 71, 9, 4151-4157 (2009) · Zbl 1187.47057 · doi:10.1016/j.na.2009.02.074
[30] Ricceri, B., On an elliptic Kirchhoff-type problem depending on two parameters, J. Glob. Optim., 46, 4, 543-549 (2010) · Zbl 1192.49007 · doi:10.1007/s10898-009-9438-7
[31] Sun, Y., Compatibility phenomena in singular problems, Proc. Roy. Soc. Edinb. Sect. A, 143, 6, 1321-1330 (2013) · Zbl 1297.35103 · doi:10.1017/S030821051100117X
[32] Szulkin, A., Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3, 2, 77-109 (1986) · Zbl 0612.58011 · doi:10.1016/S0294-1449(16)30389-4
[33] Zhao, L.; He, Y.; Zhao, P., The existence of three positive solutions of a singular \(p\)-Laplacian problem, Nonlinear Anal., 74, 16, 5745-5753 (2011) · Zbl 1250.35102 · doi:10.1016/j.na.2011.05.065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.