×

Ground state solutions for nonlinear Choquard equation with singular potential and critical exponents. (English) Zbl 1480.35223

Summary: In this paper, we study the ground state solutions to the following Choquard equation involving singular potential: \[ -\Delta u+V(|x|) u = (I_{\alpha} \ast F(u)) f(u),\; x \in \mathbb{R}^N, \] where \(N \geqslant 3\), \(\alpha \in (0, N)\), \(I_{\alpha}\) is the Riesz potential, \(V\) is a singular potential with parameter \(\theta \in (\max \{ 0,4-N\}, 2)\cup (2,2N - 2) \cup (2N - 2, \infty)\), \(F\) is the primitive of \(f\) and \(f\) satisfies critical growth in sense of the Hardy-Littlewood-Sobolev inequality. Under different range of \(\theta\) and almost necessary conditions on the nonlinearity \(f\) in the spirit of Berestycki-Lions type conditions, we divide this paper into three parts. By virtue of two different kinds of Lions-type theorem and Nehari manifold, some existence results are established.

MSC:

35J62 Quasilinear elliptic equations
35B33 Critical exponents in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] Ackermann, N., A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, J. Funct. Anal., 234, 2, 277-320 (2006) · Zbl 1126.35057
[2] Badiale, M.; Rolando, S., A note on nonlinear elliptic problems with singular potentials, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 17, 1, 1-13 (2006) · Zbl 1126.35021
[3] Badiale, M.; Benci, V.; Rolando, S., A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc., 9, 3, 355-381 (2007) · Zbl 1149.35033
[4] Badiale, M.; Guida, M.; Rolando, S., Compactness and existence results for the p-Laplace equation, J. Math. Anal. Appl., 451, 1, 345-370 (2017) · Zbl 1368.35146
[5] Bartsch, T.; Ding, Y., On a nonlinear Schrödinger equation with periodic potential, Math. Ann., 313, 1, 15-37 (1999) · Zbl 0927.35103
[6] Battaglia, L.; Van Schaftingen, J., Groundstates of the Choquard equations with a sign-changing self-interaction potential, Z. Angew. Math. Phys., 69, 3, Article 86 pp. (2018), 16 pp. · Zbl 1395.35096
[7] Berestycki, H.; Lions, P., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 4, 313-345 (1983) · Zbl 0533.35029
[8] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037
[9] Carrião, P.; Demarque, R.; Miyagaki, O., Nonlinear biharmonic problems with singular potentials, Commun. Pure Appl. Anal., 13, 6, 2141-2154 (2014) · Zbl 1304.35256
[10] Gao, F.; Yang, M., The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math., 61, 7, 1219-1242 (2018) · Zbl 1397.35087
[11] Guo, L.; Hu, T.; Peng, S.; Shuai, W., Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent, Calc. Var. Partial Differ. Equ., 58, 4, Article 128 pp. (2019), 34 pp. · Zbl 1422.35077
[12] Li, Y.; Li, G.; Tang, C., Ground state solutions for Choquard equations with Hardy-Littlewood-Sobolev upper critical growth and potential vanishing at infinity, J. Math. Anal. Appl., 484, 2, Article 123733 pp. (2020), 15 pp. · Zbl 1433.35099
[13] Lieb, E., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 93-105 (1976/77) · Zbl 0369.35022
[14] Lieb, E.; Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14 (1997), American Mathematical Society: American Mathematical Society Providence, RI
[15] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 2, 153-184 (2013) · Zbl 1285.35048
[16] Moroz, V.; Van Schaftingen, J., Existence of groundstates for a class of nonlinear Choquard equations, Trans. Am. Math. Soc., 367, 9, 6557-6579 (2015) · Zbl 1325.35052
[17] Moroz, V.; Van Schaftingen, J., Semi-classical states for the Choquard equation, Calc. Var. Partial Differ. Equ., 52, 1-2, 199-235 (2015) · Zbl 1309.35029
[18] Panda, A.; Choudhuri, D.; Saoudi, K., A critical fractional Choquard problem involving a singular nonlinearity and a radon measure, J. Pseudo-Differ. Oper. Appl., 12, 1, Article 22 pp. (2021) · Zbl 1481.35199
[19] Pekar, S., Untersuchung ber die Elektronentheorie der Kristalle (1954), Akademie Verlag: Akademie Verlag Berlin · Zbl 0058.45503
[20] Penrose, R., On gravity’s role in quantum state reduction, Gen. Relativ. Gravit., 28, 5, 581-600 (1996) · Zbl 0855.53046
[21] Ruiz, D.; Van Schaftingen, J., Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differ. Equ., 264, 2, 1231-1262 (2018) · Zbl 1377.35011
[22] Strauss, A., Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 2, 149-162 (1977) · Zbl 0356.35028
[23] Su, J.; Wang, Z.; Willem, M., Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9, 4, 571-583 (2007) · Zbl 1141.35056
[24] Su, Y., Positive solution to Schrödinger equation with singular potential and double critical exponents, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 31, 4, 667-698 (2020) · Zbl 1468.35042
[25] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24 (1996), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.