×

Dynamic analysis of counterparty exposures and netting efficiency of central counterparty clearing. (English) Zbl 1479.91371

Summary: Dynamic exposure and default contagion in the over-the-counter (OTC) market is considered in this paper to analyze the time-dependent priority of central counterparty (CCP) clearing. We investigate the asymptotic behavior of the netting efficiency which is measured as the average of total expected exposures (ATEE), by proving the convergence of empirical measure-valued processes associated with our dynamic CCP model when the number of entities tends to infinity. The limit of ATEE is supported by numerical evidence as an effective approximation to that of the finite number of entities by comparing it with Monte-Carlo simulation. The key insight revealed by our analysis is that one CCP can lose its superiority to bilateral clearing and multiple CCPs after a critical time after market distress happens, as observed in our extensive numerical experiments. We also find that both of the large initial exposure and default intensity of the entity can result in the premature failure of CCP clearing.

MSC:

91G15 Financial markets
91G45 Financial networks (including contagion, systemic risk, regulation)
Full Text: DOI

References:

[1] Acharya, V., Engle, R., Figlewski, S., Lynch, A. and Subrahmanyam, M. Centralized clearing for credit derivatives. Restoring Financial Stability: How to Repair a Failed System. Preprint available at https://doi.org/10.1002/9781118258163.ch11, 2009. · doi:10.1002/9781118258163.ch11
[2] Acharya, V. and Bisin, A., Counterparty risk externality: Centralized versus over-the-counter markets. J. Econ. Theory, 2014, 149, 153-182. doi: 10.1016/j.jet.2013.07.001 · Zbl 1288.91186 · doi:10.1016/j.jet.2013.07.001
[3] Amini, H., Filipovi, D. and Minca, A., To fully net or not to net: Adverse effects of partial multilateral netting. Opers. Res., 2015, 64(5), 1135-1142. doi: 10.1287/opre.2015.1414 · Zbl 1378.91130 · doi:10.1287/opre.2015.1414
[4] Azizpour, S., Giesecke, K. and Schwenkler, G., Exploring the sources of default clustering. J. Finan. Econ., 2018, 129(1), 154-183. doi: 10.1016/j.jfineco.2018.04.008 · doi:10.1016/j.jfineco.2018.04.008
[5] Barro, D. and Basso, A., Credit contagion in a network of firms with spatial interaction. Eur. J. Opers. Res., 2010, 205(2), 459-468. doi: 10.1016/j.ejor.2010.01.017 · doi:10.1016/j.ejor.2010.01.017
[6] Bo, L. and Capponi, A., Bilateral credit valuation adjustment for large credit derivatives portfolios. Finan. Stoch., 2014, 18(2), 431-482. doi: 10.1007/s00780-013-0217-4 · Zbl 1306.91145 · doi:10.1007/s00780-013-0217-4
[7] Bo, L. and Capponi, A., Systemic risk in interbanking networks. SIAM J. Finan. Math., 2015, 6(1), 386-424. doi: 10.1137/130937664 · Zbl 1315.91065 · doi:10.1137/130937664
[8] Bo, L. and Capponi, A., Optimal investment under information driven contagious distress. SIAM J. Contr. Optim., 2017, 55(2), 1020-1068. doi: 10.1137/140972342 · Zbl 1414.91331 · doi:10.1137/140972342
[9] Bo, L. and Capponi, A., Dynamic investment and counterparty risk. Appl. Math. Optim., 2018, 77(1), 1-45. doi: 10.1007/s00245-016-9364-2 · Zbl 1395.91477 · doi:10.1007/s00245-016-9364-2
[10] Bo, L. and Capponi, A., Portfolio choice with market-credit-risk dependencies. SIAM J. Contr. Optim., 2018, 56(4), 3050-3091. doi: 10.1137/16M1084092 · Zbl 1415.91254 · doi:10.1137/16M1084092
[11] Bo, L., Capponi, A. and Chen, P.C., Credit portfolio selection with decaying contagion intensities. Math. Finan., 2019, 29(1), 137-173. doi: 10.1111/mafi.12177 · Zbl 1411.91485 · doi:10.1111/mafi.12177
[12] Bo, L. and Ceci, C., Locally risk-minimizing hedging of counterparty risk for portfolio of credit derivatives. Appl. Math. Optim., 2020, 82, 799-850. Available at https://link.springer.com/article/10.1007/s00245-018-9549-y. · Zbl 1448.91293 · doi:10.1007/s00245-018-9549-y
[13] Boissel, C., Derrien, F., Ors, E. and Thesmar, D., Systemic risk in clearing houses: Evidence from the European repo market. J. Finan. Econ., 2017, 125(3), 511-536. doi: 10.1016/j.jfineco.2017.06.010 · doi:10.1016/j.jfineco.2017.06.010
[14] Boss, M., Elsinger, H., Summer, M. and Thurner, S., Network topology of the interbank market. Quant. Finance, 2004, 4(6), 677-684. doi: 10.1080/14697680400020325 · Zbl 1405.91729
[15] Bignon, V. and Vuillemey, G., The failure of a clearinghouse: Empirical evidence. Rev. Finan., 2020, 24(1), 99-128.
[16] Brigo, D., Capponi, A. and Pallavicini, A., Arbitrage-free bilateral counterparty risk valuation under collateralization and application to credit default swaps. Math. Finan., 2014, 24(1), 125-146. doi: 10.1111/j.1467-9965.2012.00520.x · Zbl 1285.91137 · doi:10.1111/j.1467-9965.2012.00520.x
[17] Capponi, A. and Frei, C., Systemic influences on optimal equity-credit investment. Manag. Sci., 2016, 63(8), 2756-2771. doi: 10.1287/mnsc.2016.2460 · doi:10.1287/mnsc.2016.2460
[18] Capponi, A., Cheng, W.A. and Rajan, S., Systemic risk: The dynamics under central clearing. Preprint, 2015. · doi:10.2139/ssrn.2542684
[19] Cont, R. and Kokholm, T., Central clearing of OTC derivatives: Bilateral vs multilateral netting. Stats. Risk Model., 2014, 31(1), 3-22. · Zbl 1287.91137
[20] Dawson, D.A., Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stats. Phys., 1983, 31(1), 29-85. doi: 10.1007/BF01010922 · doi:10.1007/BF01010922
[21] Dai Pra, P., Runggaldier, W., Sartori, E. and Tolotti, M., Large portfolio losses: A dynamic contagion model. Ann. Appl. Probab., 2009, 19(1), 347-394. doi: 10.1214/08-AAP544 · Zbl 1159.60353 · doi:10.1214/08-AAP544
[22] Duffie, D., Saita, L. and Wang, K., Multi-period corporate default prediction with stochastic covariates. J. Financ. Econ., 2007, 83(3), 635-665. doi: 10.1016/j.jfineco.2005.10.011 · doi:10.1016/j.jfineco.2005.10.011
[23] Duffie, D., Measuring Corporate Default Risk, 2011 (Oxford University Press: Oxford). · doi:10.1093/acprof:oso/9780199279234.001.0001
[24] Duffie, D. and Zhu, H., Does a central clearing counterparty reduce counterparty risk?. Rev. Asset Pricing Stud., 2011, 1(1), 74-95. doi: 10.1093/rapstu/rar001 · doi:10.1093/rapstu/rar001
[25] Duffie, D., Scheicher, M. and Vuillemey, G., Central clearing and collateral demand. J. Finan. Econ., 2015, 116(2), 237-256. doi: 10.1016/j.jfineco.2014.12.006 · doi:10.1016/j.jfineco.2014.12.006
[26] Eisenberg, L. and Noe, T.H., Systemic risk in financial systems. Manag. Sci., 2001, 47(2), 236-249. doi: 10.1287/mnsc.47.2.236.9835 · Zbl 1232.91688 · doi:10.1287/mnsc.47.2.236.9835
[27] Ethier, S. and Kurtz, T., Markov Processes: Characterization and Convergence, 1986 (Wiley: New York). · Zbl 0592.60049 · doi:10.1002/9780470316658
[28] Glasserman, P., Moallemi, C. and Yuan, K., Hidden illiquidity with multiple central counterparties. Opers. Res., 2015, 64(5), 1143-1158. doi: 10.1287/opre.2015.1420 · Zbl 1378.91120 · doi:10.1287/opre.2015.1420
[29] Giesecke, K., Spiliopoulos, K. and Sowers, R.B., Default clustering in large portfolios: Typical events. Ann. Appl. Probab., 2013, 23(1), 348-385. doi: 10.1214/12-AAP845 · Zbl 1262.91141 · doi:10.1214/12-AAP845
[30] He, C., Kennedy, J.S., Coleman, T.F., Forsyth, P.A., Li, Y. and Vetzal, K.R., Calibration and hedging under jump diffusion. Rev. Deriv. Res., 2006, 9(1), 1-35. doi: 10.1007/s11147-006-9003-1 · Zbl 1274.91414 · doi:10.1007/s11147-006-9003-1
[31] Henderson, V. and Liang, G.C., A multidimensional exponential utility indifference pricing model with applications to counterparty risk. SIAM J. Contr. Optim., 2016, 54(2), 690-717. doi: 10.1137/15M1040293 · Zbl 1414.91375 · doi:10.1137/15M1040293
[32] Huang, Y., Song, Q. and Zheng, H., Weak convergence of path-dependent SDEs in basket credit default swap pricing with contagion risk. SIAM J. Finan. Math., 2017, 8(1), 1-27. doi: 10.1137/15M1052329 · Zbl 1355.60077 · doi:10.1137/15M1052329
[33] Hurlin, C., Iseli, G., Pérignon, C. and Yeung, S., The counterparty risk exposure of ETF investors. J. Banking Finan., 2019, 102, 215-230. doi: 10.1016/j.jbankfin.2019.03.014 · doi:10.1016/j.jbankfin.2019.03.014
[34] Negele, J.W., The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys., 1982, 54(4), 913. doi: 10.1103/RevModPhys.54.913 · doi:10.1103/RevModPhys.54.913
[35] Jorion, P. and Zhang, G., Credit contagion from counterparty risk. J. Finan., 2009, 64(5), 2053-2087. doi: 10.1111/j.1540-6261.2009.01494.x · doi:10.1111/j.1540-6261.2009.01494.x
[36] O’Kane, D., Optimising the multilateral netting of fungible OTC derivatives. Quant. Finance, 2017, 17(10), 1523-1534. doi: 10.1080/14697688.2016.1276297 · Zbl 1402.91807
[37] Russo, V., Giacometti, R., Ortobelli, S., Rachev, S. and Fabozzi, F.J., Calibrating affine stochastic mortality models using term assurance premiums. Insurance Math. Econ., 2011, 49(1), 53-60. doi: 10.1016/j.insmatheco.2011.01.015 · Zbl 1218.91093 · doi:10.1016/j.insmatheco.2011.01.015
[38] Schoutens, W., Lévy Processes in Finance: Pricing Financial Derivatives, 2003 (Wiley: New York). · doi:10.1002/0470870230
[39] Wagner, S., Bode, C. and Koziol, P., Supplier default dependencies: Empirical evidence from the automotive industry. Euro. J. Opers. Res., 2009, 199(1), 150-161. doi: 10.1016/j.ejor.2008.11.012 · Zbl 1176.90326 · doi:10.1016/j.ejor.2008.11.012
[40] Villani, C., Topics in Optimal Transportation, 2003 (American Mathematical Society: Providence, RI). · Zbl 1106.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.