×

Quantum Fisher information in the cosmic string spacetime. (English) Zbl 1479.83267

Summary: We analyze the quantum Fisher information (QFI) for a particle detector coupled to a thermal electromagnetic field in the cosmic string spacetime. It is found that vacuum fluctuation, temperature, detector polarization and nontrivial spacetime topology affect the QFI. Vacuum fluctuation and temperature degrade QFI. When deficit angle parameter \(\nu = 1\) and detector is far away from the string, the results in free Minkowski spacetime are restored. When detector is close to the string, QFI can be effectively enhanced; specially when detector lies in the string and is not polarized along axial direction, the detector seems like a closed system, and QFI completely is not affected by the thermal electromagnetic fluctuation. For nonzero detector-string distance, QFI appears oscillatory behaviors as detector-string distance varies. In addition, this detector eventually evolves to a thermal state, which is not related to the initial state and other various parameters, which implies QFI cannot persist in for long evolution time in the cosmic string spacetime. In principle, the detector polarization, detector-string distance, temperature and deficit angle parameter provide us with more parameters to steer the QFI behaviors, which might be helpful to enhance the precision of sensing the characters of cosmic string spacetime.

MSC:

83F05 Relativistic cosmology
83E30 String and superstring theories in gravitational theory
83C50 Electromagnetic fields in general relativity and gravitational theory
81P17 Quantum entropies
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Giovannetti V, Lloyd S and Maccone L 2006 Quantum metrology Phys. Rev. Lett.96 010401 · doi:10.1103/physrevlett.96.010401
[2] Giovannetti V, Lloyd S and Maccone L 2011 Advances in quantum metrology Nat. Photon.5 222 · doi:10.1038/nphoton.2011.35
[3] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic) · Zbl 1332.81011
[4] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) · Zbl 0497.46053
[5] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R and Fan H 2018 Quantum coherence and geometric quantum discord Phys. Rep.762-764 1-100 · Zbl 1404.81045 · doi:10.1016/j.physrep.2018.07.004
[6] Jin Y and Yu H W 2015 Electromagnetic shielding in quantum metrology Phys. Rev. A 91 022120 · doi:10.1103/physreva.91.022120
[7] Huang Z M 2018 Protecting quantum Fisher information in curved space-time Eur. Phys. J. Plus133 101 · doi:10.1140/epjp/i2018-11936-9
[8] Copeland E J, Pogosian L and Vachaspati T 2011 Seeking string theory in the cosmos Class. Quantum Grav.28 204009 · Zbl 1228.83122 · doi:10.1088/0264-9381/28/20/204009
[9] Hindmarsh M 2011 Signals of inflationary models with cosmic strings Prog. Theor. Phys. Suppl.190 197 · doi:10.1143/ptps.190.197
[10] Vilenkin A 1984 Cosmic strings as gravitational lenses Astrophys. J.282 L51 · Zbl 0966.83536 · doi:10.1086/184303
[11] Gott J R 1985 Gravitational lensing effects of vacuum strings-exact solutions Astrophys. J.288 422 · doi:10.1086/162808
[12] Ford L H and Vilenkin A 1981 A gravitational analogue of the Aharonov-Bohm effect J. Phys. A: Math. Gen.14 2353 · doi:10.1088/0305-4470/14/9/030
[13] Bezerra V B 1989 Gravitational analogs of the Aharonov-Bohm effect J. Math. Phys.30 2895 · Zbl 0709.53534 · doi:10.1063/1.528472
[14] Hutsemaékers D et al 2014 Alignment of quasar polarizations with large-scale structures Astron. Astrophys.572 A18 · doi:10.1051/0004-6361/201424631
[15] Taylor A R and Jagannathan P 2016 Alignments of radio galaxies in deep radio imaging of ELAIS N1 Mon. Not. R. Astron. Soc.459 L36 · doi:10.1093/mnrasl/slw038
[16] Slagter R J 2018 Evidence of cosmic strings by the observation of the alignment of quasar polarization axes on Mpc scale Int. J. Mod. Phys. D 27 1850094 · Zbl 1430.83095 · doi:10.1142/s0218271818500943
[17] Gorini V, Kossakowski A and Surdarshan E C G 1976 Completely positive dynamical semigroups of N-level systems J. Math. Phys.17 821 · Zbl 1446.47009 · doi:10.1063/1.522979
[18] Lindblad G 1976 On the generators of quantum dynamical semigroups Commun. Math. Phys.48 119 · Zbl 0343.47031 · doi:10.1007/bf01608499
[19] Breuer H-P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) · Zbl 1053.81001
[20] Pairs M G A 2009 Quantum estimation for quantum technology Int. J. Quantum Inf.7 125 · Zbl 1162.81351 · doi:10.1142/S0219749909004839
[21] Zhong W, Sun Z, Ma J, Wang X G and Nori F 2013 Fisher information under decoherence in Bloch representation Phys. Rev. A 87 022337 · doi:10.1103/physreva.87.022337
[22] Garfinkle D 1985 General relativistic strings Phys. Rev. D 32 1323 · doi:10.1103/physrevd.32.1323
[23] Cai H, Yu H and Zhou W 2015 Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime Phys. Rev. D 92 084062 · doi:10.1103/physrevd.92.084062
[24] Andrews G E, Askey R and Roy R 1999 Special Functions (Cambridge: Cambridge University Press) · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[25] Huang Z M 2019 Quantum teleportation in thermal fluctuating electromagnetic field Int. J. Theor. Phys.58 383 · Zbl 1412.81045 · doi:10.1007/s10773-018-3939-4
[26] Yang Y et al 2020 Parameter estimation in cosmic string spacetime by using the inertial and accelerated detectors Class. Quantum Grav.37 065017 · Zbl 1478.83223 · doi:10.1088/1361-6382/ab6f73
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.