×

A new displacement model for nonlinear vibration analysis of fluid-conveying anisotropic laminated tubular beams resting on elastic foundation. (English) Zbl 1479.74051

Summary: A new displacement model for nonlinear vibration analysis of fluid-conveying anisotropic laminated tubular beams resting on a Pasternak-type foundation is presented. Based on Hamilton’s principle, the motion equations and boundary conditions are obtained by using a new high-order shear deformation tubular beam model with a von Kármán-type of kinematic nonlinearity, in which warping, shear deformation and rotational moment of inertia of cross-section and contributions of the relationship of exact curvature are considered. A numerical solution using the differential quadrature method (DQM) with an iterative algorithm is employed to determine the nonlinear frequencies and amplitude-frequency responses of fluid-conveying anisotropic laminated tubes with different boundary conditions. A detailed parametric study is conducted to analyze influence of different type of boundary conditions, and geometrical and physical properties. Numerical results demonstrate that the geometrical and physical properties, elastic foundation, boundary conditions, initial geometry imperfection, critical flow velocity and frequency-response of the fluid-conveying tubes have significant effect on dynamic behavior of anisotropic laminated composite tubes.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E30 Composite and mixture properties
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics

Software:

Matlab
Full Text: DOI

References:

[1] An, C.; Su, J., Dynamic behavior of axially functionally graded pipes conveying fluid, Math. Probl Eng., 2017, 6789634 (2017) · Zbl 1426.74179
[2] Abdelbaki, A. R.; Païdoussis, M. P.; Misra, A. K., A nonlinear model for a free-clamped cylinder subjected to confined axial flow, J. Fluid Struct., 80, 390-404 (2018)
[3] Biswal, D. K.; Mohanty, S. C., Free vibration and damping characteristics study of doubly curved sandwich shell panels with viscoelastic core and isotropic/laminated constraining layer, Eur. J. Mech. Solid., 72, 424-439 (2018) · Zbl 1406.74285
[4] Boresi, A. P.; Chong, K. P.; Lee, J. D., Elasticity in Engineering Mechanics (2011), John Wiley & Sons, Inc
[5] Chellapilla, K. R.; Simha, H. S., Critical velocity of fluid-conveying pipes resting on two-parameter foundation, J. Sound Vib., 302, 1-2, 387-397 (2007)
[6] Chen, W. Q.; Bian, Z. G.; Lv, C. F.; Ding, H. J., 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid, Int. J. Solid Struct., 41, 947-964 (2004) · Zbl 1075.74543
[7] Doaré, O.; De Langre, E., Local and global instability of fluid conveying pipes on elastic foundation, J. Fluid Struct., 16, 1, 1-14 (2002)
[8] Duc, N. D.; Hadavinia, H.; Tran, Q. Q.; Khoa, N. D., Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment, Eur. J. Mech. Solid., 75, 355-366 (2019) · Zbl 1472.74089
[9] Ghayesh, M. H.; Amabili, M.; Païdoussis, M. P., Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis, Nonlinear Dynam., 70, 335-354 (2012)
[10] Ghayesh, M. H.; Païdoussis, M. P.; Amabili, M., Nonlinear dynamics of cantilevered extensible pipes conveying fluid, J. Sound Vib., 332, 24, 6405-6418 (2013)
[11] Gorman, D. G.; Reese, J. M.; Zhang, Y. L., Vibration of a flexible pipe conveying viscous pulsating fluid flow, J. Sound Vib., 230, 379-392 (2000)
[12] Gu, J. J.; An, C.; Duan, M. L.; Levi, C.; Su, J., Integral transform solutions of dynamic response of a clamped-clamped pipe conveying fluid, Nucl. Eng. Des., 254, 2, 237-245 (2013)
[13] Gu, J. J.; Ma, T. Q.; Duan, M. L., Effect of aspect ratio on the dynamic response of a fluid-conveying pipe using the Timoshenko beam model, Ocean Eng., 114, 185-191 (2016)
[14] Hajianmaleki, M.; Qatu, M. S., Vibrations of straight and curved composite beams: a review, Compos. Struct., 100, 218-232 (2013)
[15] Hasrati, E.; Ansari, R.; Torabi, J., A novel numerical solution strategy for solving nonlinear free and forced vibration problems of cylindrical shells, Appl. Math. Model., 53, 653-672 (2018) · Zbl 1480.74110
[16] Huang, Y.; Wu, J. X.; Li, X. F.; Yang, L. E., Higher-order theory for bending and vibration of beams with circular cross section, J. Eng. Math., 80, 91-104 (2013) · Zbl 1367.74027
[17] Hutchinson, J. R., Transverse vibrations of beams, exact versus approximate solutions, J. Appl. Mech., 48, 923-928 (1981)
[18] Laithier, B. E.; Païdoussis, H. P., The equations of motion of initially stressed Timoshenko tubular beams conveying fluid, J. Sound Vib., 79, 1, 175-195 (1981) · Zbl 0477.73045
[19] Lee, S. I.; Chung, J., New nonlinear modeling for vibration analysis of a straight pipe conveying fluid, J. Sound Vib., 254, 2, 313-325 (2002)
[20] Leissa, A. W.; So, J., Comparisons of vibration frequencies for rods and beams from one-dimensional and three-dimensional analysis, J. Acoust. Soc. Am., 98, 4, 2122-2135 (1995)
[21] Li, J.; Huo, Q. J.; Li, X. B.; Kong, X. S.; Wu, W. G., Vibration analyses of laminated composite beams using refined higher-order shear deformation theory, Int. J. Mech. Mater. Des., 10, 1, 43-52 (2014)
[22] Liu, J. W.; Yu, D. L.; Zhang, Z. F.; Shen, H. J.; Wen, J. H., Flexural wave bandgap property of a periodic pipe with axial load and hydro-pressure, Acta Mech. Solida Sin., 32, 2, 173-185 (2019)
[23] Mouritz, A. P.; Gellert, E.; Burchill, P.; Challis, K., Review of advanced composite structures for naval ships and submarines, Compos. Struct., 53, 1, 21-41 (2001)
[24] Ni, Q.; Zhang, Z. L.; Wang, L., Application of the differential transformation method to vibration analysis of pipes conveying fluid, Appl. Math. Comput., 217, 7028-7038 (2011) · Zbl 1346.74038
[25] Oh, I. K.; Han, J. H.; Lee, I., Postbuckling and vibration characteristics of piezolaminated composite plate subjected to thermo-piezoelectric loads, J. Sound Vib., 233, 1, 19-40 (2000) · Zbl 1237.74033
[26] Païdoussis, M. P., Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 2 (2004), Elsevier Academic Press: Elsevier Academic Press London
[27] Païdoussis, M. P.; Semler, C., Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: a full nonlinear analysis, Nonlinear Dynam., 4, 655-670 (1993)
[28] Patel, M. H.; Seyed, F. B., Review of flexible riser modelling and analysis techniques, Eng. Struct., 17, 4, 293-304 (1995)
[29] Peng, G.; Xiong, Y. M.; Gao, Y.; Liu, L. M.; Wang, M. H.; Zhang, Z., Non-linear dynamics of a simply supported fluid-conveying pipe subjected to motion-limiting constraints: two-dimensional analysis, J. Sound Vib., 435, 192-204 (2018)
[30] Plaut, R. H., Postbuckling and vibration of end-supported elastica pipes conveying fluid and columns under follower loads, J. Sound Vib., 289, 1-2, 264-277 (2006)
[31] Reddy, J. N.; Wang, C. M., Dynamics of Fluid-Conveying Beams: Governing Equations and Finite Element Models. CORE Report No. 2004-03 (2004), National University of Singapore
[32] Sayyad, A. S.; Ghugal, Y. M., Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature, Compos. Struct., 171, 486-504 (2017)
[33] She, G. L.; Yuan, F. G.; Ren, Y. R.; Liu, H. B.; Xiao, W. S., Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory, Compos. Struct., 203, 614-623 (2018)
[34] Shu, C.; Du, H., Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, Int. J. Solid Struct., 34, 7, 819-835 (1997) · Zbl 0944.74645
[35] Sparks, C. P.; Odru, P.; Bono, H.; Metivaud, G., Mechanical Testing of High- Performance Composite Tubes for TLP Production Risers (1998), Proceedings of the Offshore Technology Conference: Proceedings of the Offshore Technology Conference Houston
[36] Steinboeck, A.; Kugi, A.; Mang, H. A., Energy-consistent shear coefficients for beams with circular cross sections and radially inhomogeneous materials, Int. J. Solid Struct., 50, 1859-1868 (2013)
[37] Stephen, N. G.; Levinson, M., A second order beam theory, J. Sound Vib., 67, 3, 293-305 (1979) · Zbl 0422.73047
[38] Tang, Y.; Yang, T. Z., Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material, Compos. Struct., 185, 393-400 (2018)
[39] Trefethen, L. N., Spectral Methods in MATLAB (2000), Oxford University Press: Oxford University Press England · Zbl 0953.68643
[40] Valisetty, R. R., Refined bending theory for beams of circular cross section, J. Eng. Mech., 116, 2072-2079 (1990)
[41] Wang, H.; Williams, K., Vibrational modes of thick cylinders of finite length, J. Sound Vib., 191, 955-971 (1996)
[42] Wang, L.; Ni, Q., Large-amplitude free vibrations of fluid-conveying pipes on a Pasternak foundation, Int. J. Struct. Stabil. Dynam., 8, 4, 615-626 (2008)
[43] Vinyas, M., Vibration control of skew magneto-electro-elastic plates using active constrained layer damping, Compos. Struct., 208, 600-617 (2019)
[44] Vinyas, M.; Dineshkumar, H., Nonlinear deflection analysis of CNT/magneto-electro -elastic smart shells under multi-physics loading, Mech. Adv. Mater. Struct., 1-25 (2020)
[45] Wang, L.; Liu, Z. Y.; Abdessattar, A.; Wang, Y. K.; Dai, H. L., Nonlinear dynamics of cantilevered pipes conveying fluid: towards a further understanding of the effect of loose constraints, Int. J. Non Lin. Mech., 95, 19-29 (2017)
[46] Wang, X.; Lu, G.; Xiao, D. G., Non-linear thermal buckling for local delamination near the surface of laminated cylindrical shell, Int. J. Mech. Sci., 44, 5, 947-965 (2002) · Zbl 1115.74324
[47] Wu, J. K.; Wang, M. Z.; Wang, W., Introduction to Elasticity (2001), Peking University Press: Peking University Press Beijing
[48] Wu, X.; Ge, F.; Hong, Y., A review of recent studies on vortex-induced vibrations of long slender cylinders, J. Fluid Struct., 28, 292-308 (2012)
[49] Zhang, P.; Fu, Y. M., A higher-order beam model for tubes, Eur. J. Mech. Solid., 38, 1, 12-19 (2013) · Zbl 1347.74054
[50] Zhong, J.; Fu, Y. M.; Wan, D. T.; Li, Y. L., Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model, Appl. Math. Model., 40, 7601-7614 (2016) · Zbl 1471.74047
[51] Zhou, D.; Cheung, Y. K.; Lo, S. H.; Au, F. T.K., 3D vibration analysis of solid and hollow circular cylinders via Chebyshev-Ritz method, Comput. Methods Appl. Mech. Eng., 192, 1575-1589 (2003) · Zbl 1050.74024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.