×

Superintegrability of Calogero-Moser systems associated with the cyclic quiver. (English) Zbl 1479.70044

The study of (maximally) superintegrable systems, i.e., Hamiltonian systems of \(n\) degrees of freedom possessing the maximal number \(2n-1\) of functionally independent integrals of motion, has a long standing history since the original work of Nekhoroshev and others in the early 70’s, and attracting much attention from the fundamental non-commutativity theorem due to Mishchenko and Fomenko, which generalizes Arnold-Liouville integrability. Since then there has been a number of studies of many important and physically interesting theories, which have been shown to be superintegrable both in classical and quantum mechanics.
In the paper under review, the authors raise the question whether recently discovered generalization of Calogero-Moser systems associated with cyclic quivers is too superintegrable. There are several cases investigated in the paper – spinless, spin, spin-harmonic, each case being illustrated with several helpful examples and presented with complete explicit technical constructions.
The main result of the paper is that all these cases are superintegrable, and the authors show that ultimately, for all the considered cases, the superintegrability follows from two basic theorems which the authors also formulate. The last and very useful and helpful section of the paper is devoted entirely to detailed proofs of all statements and theorems used in the main text.

MSC:

70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
16G20 Representations of quivers and partially ordered sets
53D20 Momentum maps; symplectic reduction

References:

[1] Adler, M., Some finite dimensional integrable systems and their scattering behavior, Commun.Math. Phys., 55, 195-230 (1977) · Zbl 0366.58004 · doi:10.1007/bf01614548
[2] Ayadi, V.; Fehér, L., On the superintegrability of the rational Ruijsenaars-Schneider model, Phys. Lett. A, 374, 1913-1916 (2010) · Zbl 1236.70012 · doi:10.1016/j.physleta.2010.02.065
[3] Ayadi, V.; Fehér, L.; Görbe, T. F., Superintegrability of rational Ruijsenaars-Schneider systems and their action-angle duals, J. Geom. Symmetry Phys., 27, 27-44 (2012) · Zbl 1273.81116 · doi:10.7546/jgsp-27-2012-27-44
[4] Berest, Y.; Chalykh, O.; Eshmatov, F., Recollement of deformed preprojective algebras and the Calogero-Moser correspondence, Moscow Math. J., 8, 21-37 (2008) · Zbl 1207.16034 · doi:10.17323/1609-4514-2008-8-1-21-37
[5] Berntson, B. K.; Marquette, I.; Miller, W., A new way to classify 2D higher order quantum superintegrable systems, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.81296 · doi:10.1088/1751-8121/abc04a
[6] Bielawski, R.; Pidstrygach, V., On the symplectic structure of instanton moduli spaces, Adv. Math., 226, 2796-2824 (2011) · Zbl 1220.14011 · doi:10.1016/j.aim.2010.10.001
[7] Calogero, F., Solution of the one‐dimensional N‐body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12, 419-436 (1971) · Zbl 1002.70558 · doi:10.1063/1.1665604
[8] Caseiro, R., Master integrals, superintegrability and quadratic algebras, Bull. Sci. Math., 126, 617-630 (2002) · Zbl 1010.37033 · doi:10.1016/s0007-4497(02)01117-x
[9] Caseiro, R.; Françoise, J-P; Sasaki, R., Algebraic linearization of dynamics of Calogero type for any Coxeter group, J. Math. Phys., 41, 4679-4686 (2000) · Zbl 0985.37061 · doi:10.1063/1.533370
[10] Chalykh, O.; Fairon, M., Multiplicative quiver varieties and generalised Ruijsenaars-Schneider models, J. Geom. Phys., 121, 413-437 (2017) · Zbl 1418.70026 · doi:10.1016/j.geomphys.2017.08.006
[11] Chalykh, O.; Fairon, M., On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system, Lett. Math. Phys., 110, 2893-2940 (2020) · Zbl 1468.70010 · doi:10.1007/s11005-020-01320-x
[12] Chalykh, O.; Silantyev, A., KP hierarchy for the cyclic quiver, J. Math. Phys., 58 (2017) · Zbl 1370.37126 · doi:10.1063/1.4991031
[13] Crampé, N.; Young, C. A S., Sutherland models for complex reflection groups, Nucl. Phys. B, 797, 499-519 (2008) · Zbl 1234.81088 · doi:10.1016/j.nuclphysb.2007.11.028
[14] Crawley-Boevey, W., Geometry of the moment map for representations of quivers, Compos. Math., 126, 257-293 (2001) · Zbl 1037.16007 · doi:10.1023/a:1017558904030
[15] Escobar-Ruiz, A. M.; Linares, R.; Winternitz, P., New infinite families of Nth-order superintegrable systems separating in Cartesian coordinates, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.81306 · doi:10.1088/1751-8121/abb341
[16] Fairon, M., Spin versions of the complex trigonometric Ruijsenaars-Schneider model from cyclic quivers, J. Integrable Syst., 4 (2019) · Zbl 1481.37058 · doi:10.1093/integr/xyz008
[17] Fairon, M., Multiplicative quiver varieties and integrable particle systems (2019)
[18] Feigin, M.; Hakobyan, T., Algebra of dunkl Laplace-Runge-Lenz vector (2019)
[19] Fehér, L.; Görbe, T. F., Duality between the trigonometric BC n Sutherland system and a completed rational Ruijsenaars-Schneider-van Diejen system, J. Math. Phys., 55 (2014) · Zbl 1366.70016 · doi:10.1063/1.4898077
[20] Fehér, L.; Pusztai, B. G., Spin Calogero models obtained from dynamical R-matrices and geodesic motion, Nucl. Phys. B, 734, 304-325 (2006) · Zbl 1192.37081 · doi:10.1016/j.nuclphysb.2005.11.025
[21] Fehér, L.; Pusztai, B. G., Generalized spin Sutherland systems revisited, Nucl. Phys. B, 893, 236-256 (2015) · Zbl 1348.70044 · doi:10.1016/j.nuclphysb.2015.02.003
[22] Fordy, A. P., The role of commuting operators in quantum superintegrable systems, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.81261 · doi:10.1088/1751-8121/ab9edd
[23] Görbe, T. F., Integrable many-body systems of Calogero-Ruijsenaars type (2017) · doi:10.14232/phd.3595
[24] Görbe, T.; Gyenge, Á., Canonical spectral coordinates for the Calogero-Moser space associated with the cyclic quiver, J. Nonlinear Math. Phys., 7, 243-266 (2020) · Zbl 1436.14059 · doi:10.1080/14029251.2020.1700634
[25] Gorsky, A.; Rubtsov, V., Dualities in integrable systems: geometrical aspects, NATO Science Series: II. Mathematical Physics Chemistry, vol 35, 173-198 (2001), Dordrecht: Springer, Dordrecht · Zbl 0993.81022 · doi:10.1007/978-94-010-0670-5_11
[26] Gibbons, J.; Hermsen, T., A generalisation of the Calogero-Moser system, Physica D, 11, 337-348 (1984) · Zbl 0587.70013 · doi:10.1016/0167-2789(84)90015-0
[27] Kharchev, S.; Levin, A.; Olshanetsky, M.; Zotov, A., Quasi-compact Higgs bundles and Calogero-Sutherland systems with two types of spins, J. Math. Phys., 59 (2018) · Zbl 1408.53035 · doi:10.1063/1.5048676
[28] Li, L-C; Xu, P., A class of integrable spin Calogero-Moser systems, Commun. Math. Phys., 231, 257-286 (2002) · Zbl 1012.37034 · doi:10.1007/s00220-002-0724-1
[29] Mishchenko, A. S.; Fomenko, A. T., Generalized Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl., 12, 113-121 (1978) · Zbl 0405.58028 · doi:10.1007/bf01076254
[30] Moser, J., Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., 16, 197-220 (1975) · Zbl 0303.34019 · doi:10.1016/0001-8708(75)90151-6
[31] Nekhoroshev, N. N., Action-angle variables and their generalization, Trans. Moscow Math. Soc., 26, 180-198 (1972) · Zbl 0284.58009
[32] Olshanetsky, M. A.; Perelomov, A. M., Completely integrable Hamiltonian systems connected with semisimple Lie algebras, Invent. Math., 37, 93-108 (1976) · Zbl 0342.58017 · doi:10.1007/bf01418964
[33] Perelomov, A. M., Integrable Systems of Classical Mechanics and Lie Algebras (1990), Basel: Birkhäuser, Basel · Zbl 0717.70003
[34] Reshetikhin, N., Degenerate integrability of spin Calogero-Moser systems and the duality with the spin Ruijsenaars systems, Lett. Math. Phys., 63, 55-71 (2003) · Zbl 1026.37058 · doi:10.1023/A:1022964224404
[35] Ruijsenaars, S. N M.; Schneider, H., A new class of integrable systems and its relation to solitons, Ann. Phys., NY, 170, 370-405 (1986) · Zbl 0608.35071 · doi:10.1016/0003-4916(86)90097-7
[36] Ruijsenaars, S. N M., Action-angle maps and scattering theory for some finite-dimensional integrable systems, Commun. Math. Phys., 115, 127-165 (1988) · Zbl 0667.58016 · doi:10.1007/bf01238855
[37] Tacchella, A., On a family of quivers related to the Gibbons-Hermsen system, J. Geom. Phys., 93, 11-32 (2015) · Zbl 1330.58006 · doi:10.1016/j.geomphys.2015.03.002
[38] Toda, M., Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan, 22, 431-436 (1967) · doi:10.1143/jpsj.22.431
[39] Tsiganov, A. V., Superintegrable systems and Riemann-Roch theorem, J. Math. Phys., 61 (2020) · Zbl 1437.37070 · doi:10.1063/1.5132869
[40] Van den Bergh, M., Double Poisson algebras, Trans. Am. Math. Soc., 360, 5711-5769 (2008) · Zbl 1157.53046 · doi:10.1090/s0002-9947-08-04518-2
[41] Wilson, G., Collisions of Calogero-Moser particles and an adelic grassmannian, Invent. Math., 133, 1-41 (1998) · Zbl 0906.35089 · doi:10.1007/s002220050237
[42] Wilson, G., Notes on the vector adelic Grassmannian (2009)
[43] Winternitz, P.; Shabat, A. B.; González-López, A.; Mañas, M.; Martínez Alonso, L.; Rodríguez, M. A., Superintegrable systems in classical and quantum mechanics, New Trends in Integrability and Partial Solvability. NATO Science Series vol 132, 281-297 (2004), Dordrecht: Springer, Dordrecht · Zbl 1064.35156 · doi:10.1007/978-94-007-1023-8_11
[44] Wojciechowski, S., Superintegrability of the Calogero-Moser system, Phys. Lett. A, 95, 279-281 (1983) · doi:10.1016/0375-9601(83)90018-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.