×

A local min-orthogonal based numerical method for computing multiple coexisting solutions to cooperative \(p\)-Laplacian systems. (English) Zbl 1479.65031

Summary: The objective of the present paper is to provide a detailed account of a local min-orthogonal method for finding multiple coexisting solutions to cooperative \(p\)-Laplacian systems. A local \(L\)-\(\bot\) selection mapping on a product space of two Banach spaces is introduced in order to develop a local characterization of the coexisting solutions. Using this local characterization we propose a numerical algorithm for finding multiple coexisting solutions to the system and provide a subsequence convergence result of the algorithm. We also discuss the discretization of the problem using the finite element method and the associated convergence results of the numerical solutions. Finally, we provide the numerical results to demonstrate the efficiency of the proposed method and also to confirm its related theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N99 Numerical methods for partial differential equations, boundary value problems
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35D30 Weak solutions to PDEs
49J35 Existence of solutions for minimax problems
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI

References:

[1] Aubin, J.; Ekeland, I., Applied Nonlinear Analysis (1984), Wiley: Wiley New York · Zbl 0641.47066
[2] Bensoussan, A.; Frehse, J., Regularity Results for Nonlinear Elliptic Systems and Applications (2002), Springer: Springer Berlin · Zbl 1140.35407
[3] Boccardo, L.; De Figueiredo, D. G., Some remarks on a system of quasilinear elliptic equations, Nonlinear Differ. Equ. Appl., 9, 309-323 (2002) · Zbl 1011.35050
[4] Chen, X.; Zhou, J., A local min-max-orthogonal method for finding multiple solutions to noncooperative elliptic systems, Math. Comput., 79, 272, 2213-2236 (2010) · Zbl 1200.35094
[5] Chen, X.; Zhou, J.; Yao, X., A numerical method for finding multiple co-existing solutions to nonlinear cooperative systems, Appl. Numer. Math., 58, 11, 1614-1627 (2008) · Zbl 1158.65081
[6] Choi, Y. S.; McKenna, P. J., A mountain pass method for the numerical solution of semilinear elliptic problems, Nonlinear Anal., 20, 4, 417-437 (1993) · Zbl 0779.35032
[7] Choi, Y. S.; Huan, Z.; Lui, R., Global existence of solutions of a strongly coupled quasilinear parabolic system with applications to electrochemistry, J. Differ. Equ., 194, 2, 406-432 (2003) · Zbl 1036.35073
[8] Dancer, E. N.; Du, Y., Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal., 34, 2, 292-314 (2002) · Zbl 1055.35046
[9] Ding, Z.; Costa, D.; Chen, G., A high-linking algorithm for sign-changing solutions of semilinear elliptic equations, Nonlinear Anal., 38, 2, 151-172 (1999) · Zbl 0941.35023
[10] Feng, W.; Salgado, A. J.; Wang, C.; Wise, S. M., Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334, 45-67 (2017) · Zbl 1375.35149
[11] Feng, W.; Guan, Z.; Lowengrub, J.; Wang, C.; Wise, S. M.; Chen, Y., A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis, J. Sci. Comput., 76, 3, 1938-1967 (2018) · Zbl 1398.65208
[12] Feng, W.; Wang, C.; Wise, S. M.; Zhang, Z., A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection, Numer. Methods Partial Differ. Equ., 34, 6, 1975-2007 (2018) · Zbl 1407.76095
[13] Fleckinger-Pelle, J.; Gossez, J. P.; Takáĉ, P.; De Thélin, F., Nonexistence of solutions and an anti-maximum principle for cooperative systems with the p-Laplacian, Math. Nachr., 194, 1, 49-78 (1998) · Zbl 0917.35016
[14] Huang, Y. Q.; Li, R.; Liu, W., Preconditioned descent algorithms for p-Laplacian, J. Sci. Comput., 32, 2, 343-371 (2007) · Zbl 1134.65079
[15] Li, Y.; Zhou, J., A minimax method for finding multiple critical points and its applications to semilinear PDEs, SIAM J. Sci. Comput., 23, 3, 840-865 (2001) · Zbl 1002.35004
[16] Liu, W. B.; Barrett, J. W., Finite element approximation of some degenerate monotone quasilinear elliptic systems, SIAM J. Numer. Anal., 33, 1, 88-106 (1996) · Zbl 0846.65064
[17] Nehari, Z., On a class of nonlinear second-order differential equations, Trans. Am. Math. Soc., 95, 1, 101-123 (1960) · Zbl 0097.29501
[18] Perera, K.; Agarwal, R. P.; O’Regan, D., Morse Theoretic Aspects of p-Laplacian Type Operators, vol. 161 (2010), American Mathematical Soc. · Zbl 1192.58007
[19] Vélin, J.; De Thélin, F., Existence and nonexistence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Complut. Madr., 6, 1, 153-194 (1993) · Zbl 0834.35042
[20] Wang, Z. Q., On a superlinear elliptic equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 8, 1, 43-57 (1991) · Zbl 0733.35043
[21] Wang, Z. Q.; Zhou, J., A local minimax-Newton method for finding multiple saddle points with symmetries, SIAM J. Numer. Anal., 42, 4, 1745-1759 (2004) · Zbl 1087.65565
[22] Wang, Z. Q.; Zhou, J., An efficient and stable method for computing multiple saddle points with symmetries, SIAM J. Numer. Anal., 43, 2, 891-907 (2005) · Zbl 1092.65114
[23] Yao, X., Convergence analysis of a minimax method for finding multiple solutions of semilinear elliptic equation: Part I-On polyhedral domain, J. Sci. Comput., 62, 3, 652-673 (2015) · Zbl 1320.65156
[24] Yao, X., Two classes of Ljusternik-Schnirelman minimax algorithms and an application for finding multiple negative energy solutions of a class of p-Laplacian equations, J. Comput. Appl. Math., 342, 495-520 (2018) · Zbl 1393.35064
[25] Yao, X.; Zhou, J., A minimax method for finding multiple critical points in Banach spaces and its application to quasi-linear elliptic PDE, SIAM J. Sci. Comput., 26, 5, 1796-1809 (2005) · Zbl 1078.58009
[26] Yao, X.; Zhou, J., Numerical methods for computing nonlinear eigenpairs: Part I. Isohomogeneous cases, SIAM J. Sci. Comput., 29, 4, 1355-1374 (2007) · Zbl 1156.65055
[27] Yao, X.; Zhou, J., Unified convergence results on a minimax algorithm for finding multiple critical points in Banach spaces, SIAM J. Numer. Anal., 45, 3, 1330-1347 (2007) · Zbl 1143.58006
[28] Zhou, J., A local min-orthogonal method for finding multiple saddle points, J. Math. Anal. Appl., 291, 1, 66-81 (2004) · Zbl 1274.35085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.