×

Global Yamabe flow on asymptotically flat manifolds. (English) Zbl 1479.53110

The purpose of the paper under review is to study the existence of global Yamabe flows on asymptotically flat manifolds.
Given an \(n\)-dimensional complete manifold \((M^n,g_0)\), \(n\geq 3\), the Yamabe flow on \((M^n,g_0)\) is a family of Riemannian metrics \(\{g(\cdot,t)\}\) on \(M\) defined by the evolution equation \[\begin{cases} \frac{\partial g}{\partial t} &=-Rg\quad \mbox{in}\quad M^n \times [0,T),\\ g(\cdot,0) &= g_0 \quad \mbox{in}\quad M^n, \end{cases}\] where \(R\) is the scalar curvature of the metric \(g:=g(\cdot,t)=u^{\frac{4}{n-2}}g_0\) and \(u: M^n \to \mathbb{R}^+\) is a positive smooth function on \(M^n\).
A Riemannian manifold \(M^n, n\geq 3\) with \(C^{\infty}\) metric \(g\) is called asymptotically flat of order \(\tau > 0\) if there exists a decomposition \(M^n =M_0 \cup M_{\infty}\) with \(M_0\) compact and a diffeomorphism \(M_{\infty} \cong \mathbb{R}^n -B(o,R_0)\) for some constant \(R_0 > 0\) such that \[g_{ij} -\delta_{ij} \in C^{2+\alpha}_{-\tau}(M)\] in the coordinates \(\{x^i\}\) induced on \(M_{\infty}\) and the coordinates \(\{x^i\}\) are called asymptotic coordinates.
First, the author studies the local existence of the Yamabe flow on a complete Riemannian manifold with bounded scalar curvature. Secondly, the author proves the existence of global Yamabe flows on asymptotically flat manifolds.

MSC:

53E99 Geometric evolution equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35K55 Nonlinear parabolic equations
35R01 PDEs on manifolds
53C18 Conformal structures on manifolds

References:

[1] An, Y.; Ma, L., The maximum principle and the Yamabe flow, (Partial Differential Equations and Their Applications (1999), World Scientific: World Scientific Singapore), 211-224 · Zbl 0993.58015
[2] Aronson, D. G., The porous medium equation, (Nonlinear Diffusion Problems. Nonlinear Diffusion Problems, Montecatini Terme, 1985. Nonlinear Diffusion Problems. Nonlinear Diffusion Problems, Montecatini Terme, 1985, Lecture Notes in Math., vol. 1224 (1986), Springer: Springer Berlin), 1-46 · Zbl 0626.76097
[3] Aubin, T., Nonlinear Analysis on Manifolds, Monge-Amperé Equations (1982), Springer · Zbl 0512.53044
[4] Bahuaud, Eric; Vertman, Boris, Yamabe flow on manifolds with edges, Math. Nachr., 287, 2-3, 127-159 (2014) · Zbl 1305.53065
[5] Bahuaud, Eric; Vertman, Boris, Long-time existence of the edge Yamabe flow, J. Math. Soc. Jpn., 71, 2, 651-688 (Apr. 2019) · Zbl 1432.53130
[6] Balehowsky, T.; Woolgar, E., The Ricci flow of asymptotically hyperbolic mass and applications · Zbl 1279.83034
[7] Brendle, S., Convergence of the Yamabe flow for arbitrary initial energy, J. Differ. Geom., 69, 217-278 (2005) · Zbl 1085.53028
[8] B. Choi, P. Daskalopoulos, J. King, Type II singularities on complete non-compact Yamabe flow, arXiv e-prints, September 2018. · Zbl 1475.53104
[9] Cheng, L.; Zhu, A., Yamabe flow and ADM mass on asymptotically flat manifolds, J. Math. Phys., 56, Article 101507 pp. (2015) · Zbl 1327.83018
[10] Chow, B., Yamabe flow on locally conformally flat manifolds, Commun. Pure Appl. Math., XLV, 1003-1014 (1992) · Zbl 0785.53027
[11] Chow, B.; Knopf, D., The Ricci Flow: An Introduction, Math. Surveys Monogr., vol. 110 (2004) · Zbl 1086.53085
[12] Dai, X.; Ma, L., Mass under Ricci flow, Commun. Math. Phys., 274, 65-80 (2007) · Zbl 1127.53056
[13] Daskalopoulos, P.; Kenig, C. E., Degenerate Diffusion. Initial Value Problems and Local Regularity Theory, EMS Tracts Math. (2007), Europ. Math. Soc.: Europ. Math. Soc. Zurich · Zbl 1205.35002
[14] Daskalopoulos, Panagiota; Sesum, Natasa, The classification of locally conformally flat Yamabe solitons, Adv. Math., 240, 346-369 (2013) · Zbl 1290.35217
[15] Dilts, J.; Maxwell, D., Yamabe classification and prescribed scalar curvature in the asymptotically Euclidean setting, Commun. Anal. Geom., 26, 5, 1127-1168 (2018) · Zbl 1408.53046
[16] Dodziuk, J., Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J., 32, 703-716 (1983) · Zbl 0526.58047
[17] Fischer-Colbrie, D.; Schoen, R., The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, Commun. Pure Appl. Math., 33, 199-211 (1980) · Zbl 0439.53060
[18] Giesen, Gregor; Topping, Peter M., Existence of Ricci flows of incomplete surfaces, Commun. Partial Differ. Equ., 36, 10, 1860-1880 (2011) · Zbl 1233.35123
[19] Hamilton, R., The Ricci flow on surfaces, (Mathematics and General Relativity. Mathematics and General Relativity, Contemporary Mathematics, vol. 71 (1988), AMS), 237-261 · Zbl 0663.53031
[20] Richard S. Hamilton, Lectures on geometric flows, 1989, unpublished.
[21] Herrero, M.; Pierre, M., The Cauchy problem for \(u_t = \operatorname{\Delta} u^m\) when \(0 < m < 1\), Trans. Am. Math. Soc., 291, 1, 145-158 (1985) · Zbl 0583.35052
[22] Ladyzhenskaja, O. A.; Solonnikov, V. A.; Uralćeva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Translations of Mathematical Monographs (1988), American Mathematical Society
[23] Lee, John M.; Parker, Thomas H., The Yamabe problem, Bull. Am. Math. Soc. (N.S.), 17, 37-91 (1987) · Zbl 0633.53062
[24] Ma, Li, Yamabe flow and metrics of constant scalar curvature on a complete manifold, Calc. Var. Partial Differ. Equ., 58, 30 (2019) · Zbl 1409.53036
[25] Ma, Li, Convergence of Ricci flow on R2 to the plane, Differ. Geom. Appl., 31, 388-392 (2013) · Zbl 1298.53066
[26] Ma, Li, Gap theorems for locally conformally flat manifolds, J. Differ. Equ., 260, 2, 1414-1429 (2016) · Zbl 1328.58033
[27] Ma, Li, Yamabe metrics, fine solutions to Yamabe flow, and local \(L^1\)-stability
[28] Ma, Li, The Dirichlet problem at infinity on a quasi-hyperbolic manifold, (Chang, K. S.; Chang, K. C., Proc. International Conference on Pure and Appl. Math. (1994), South Korea Press), 195-207
[29] Ma, Li; Cheng, L., Yamabe flow and Myers type theorem, J. Geom. Anal., 24, 246-270 (2014) · Zbl 1307.53029
[30] Ma, Li; Witt, Ingo, Discrete Morse flow for Ricci flow and porous medium equation, Commun. Nonlinear Sci. Numer. Simul., 59, 158-164 (2018), (Reviewer: Kin Ming Hui) 53C44 (35K55) · Zbl 1524.53176
[31] Schoen, R., Variation Theory for the Total Scalar Curvature Functional for Riemannian Metric and Related Topics, Lecture Notes in Math., vol. 1365, 120-154 (1987), Springer: Springer Berlin · Zbl 0702.49038
[32] Schoen, R.; Yau, S. T., Lectures on Differential Geometry (1986), Academic Press
[33] Schulz, M., Instantaneously complete Yamabe flow on hyperbolic space, Calc. Var. Partial Differ. Equ., 58, 6, Article 190 pp. (2019) · Zbl 1428.53108
[34] Schulz, M., Incomplete Yamabe flows and removable singularities, J. Funct. Anal., 278, 11, Article 108475 pp. (2020) · Zbl 1434.53102
[35] Schwetlick, H.; Struwe, M., Convergence of the Yamabe flow for ‘large’ energies, J. Reine Angew. Math., 562, 59-100 (2003) · Zbl 1079.53100
[36] Trudinger, Neil S., Pointwise estimates and quasilinear parabolic equations, Commun. Pure Appl. Math., 21, 205-226 (1968) · Zbl 0159.39303
[37] Ye, R., Global existence and convergence of the Yamabe flow, J. Differ. Geom., 39, 35-50 (1994) · Zbl 0846.53027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.