×

Strong convergence for a modified forward-backward splitting method in Banach spaces. (English) Zbl 1479.47068

Summary: We propose a modified forward-backward splitting method and prove a new strong convergence theorem of solutions to a zero problem of the sum of a monotone operator and an inverse-strongly-monotone operator in a real 2-uniformly convex and uniformly smooth Banach space. Some new results for variational inequality problems and monotone inclusions are obtained.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H05 Monotone operators and generalizations
47J22 Variational and other types of inclusions
49J40 Variational inequalities
Full Text: DOI

References:

[1] Y.I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartosator, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15-50. Dekker, New York (1996). · Zbl 0883.47083
[2] Y.I. Alber, S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4 (1994), 39-54. · Zbl 0851.47043
[3] K. Aoyama, Y. Kimura, F. Kohsaka, Strong convergence theorems for strongly relatively nonexpansive sequences and applications, J. Nonlinear Anal. Optim. 3 (2012), 67-77. · Zbl 1413.47100
[4] H. Attouch, J. Peypouquet, P. Redont, Backward-forward algorithms for structured monotone inclusions in Hilbert spaces, J. Math. Anal. Appl. 457 (2018), 1095-1117. · Zbl 1375.65081
[5] J.B. Baillon, G. Haddad, Quelques propri´et´es des op´erateurs angle-born´es et n-cycliquement monotones, Israel J. Math. 26 (1977), 137-150. · Zbl 0352.47023
[6] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei R. S. R. Bucuresti, Romania, 1976. · Zbl 0328.47035
[7] O.A. Boikanyo, The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators, Abstr. Appl. Anal. 2016 (2016), Article ID 2371857. · Zbl 1470.65109
[8] F.E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann. 175 (1968), 89-113. · Zbl 0159.43901
[9] G.H-G. Chen, R.T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim. 7 (1997), 421-444. · Zbl 0876.49009
[10] S.Y. Cho, X. Qin, L. Wang, Strong convergtence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl. 2014 (2014), Article ID 94. · Zbl 1332.47040
[11] J. C. Dunn, Convexity, monotonicity, and gradient processes in Hilbert space, J. Math. Anal. Appl. 53 (1976), 145-158. · Zbl 0321.49025
[12] D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems (M.Fortin and R.Glowinski Eds.), Studies in Mathematics and Its Applications, North Holland, Amsterdam, Holland, Vol. 15, 299-331, 1983. · Zbl 0525.65045
[13] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. A MODIFIED FORWARD-BACKWARD SPLITTING METHOD17 · Zbl 0177.19101
[14] Y. Haugazeau, Sur les in´equations variationnelles et la minimisation de fonctionnelles convexes, Th‘ese, Universit´e de Paris, Paris, France, 1968.
[15] H. Iiduka, W. Takahashi, Weak convergence of a projection algorithm for variational inequalities in a Banach space, J. Math. Anal. Appl. 339 (2008), 668-679. · Zbl 1129.49012
[16] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938-945. · Zbl 1101.90083
[17] Y. Kimura, K. Nakajo, The problem of image recovery by the metric projections in Banach spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 817392. · Zbl 1263.47079
[18] Y. Kimura, K. Nakajo, Strong convergence to a solution of a variational inequality problem in Banach spaces, J. Appl. Math. 2014 (2014), Article ID 346517. · Zbl 1448.47065
[19] J.L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-517. · Zbl 0152.34601
[20] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979), 964-979. · Zbl 0426.65050
[21] F. Liu, M.Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal. 6 (1998), 313-344. · Zbl 0924.49009
[22] P.E. Maing´e, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912. · Zbl 1156.90426
[23] S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005), 257-266. · Zbl 1071.47063
[24] S. Matsushita, K. Nakajo, W. Takahashi, Strong convergence theorems obtained by a generalized projections hybrid method for families of mappings in Banach spaces, Nonlinear Anal. 73 (2010), 1466-1480. · Zbl 1201.49033
[25] A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl. 241 (2000), 46-55. · Zbl 0957.47039
[26] A. Moudafi, M. Th´era, Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 94 (1997), 425-448. · Zbl 0891.49005
[27] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math. 155 (2003), 447-454. · Zbl 1027.65077
[28] K. Nakajo, W. Takahashi, Strong and weak convergence theorems by an improved splitting method, Commun. Appl. Nonlinear Anal. 9 (2002), 99-107. · Zbl 1050.47049
[29] K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math. 10 (2006), 339-360. · Zbl 1109.47060
[30] K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence theorems of Halpern’s type for families of nonexpansive mappings in Hilbert spaces, Thai J. Math. 7 (2009), 49-67. · Zbl 1205.49038
[31] G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl. 72 (1979), 383-390. · Zbl 0428.47039
[32] X. Qin, S.Y. Cho, L. Wang, A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl. 2014 (2014), Article ID 75. · Zbl 1332.47026
[33] R.T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510. · Zbl 0145.15901
[34] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216. · Zbl 0199.47101
[35] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88. · Zbl 0222.47017
[36] N. Shahzad, H. Zegeye, Approximating a common point of fixed points of a pseudocontractive mapping and zeros of sum of monotone mappings, Fixed Point Theory Appl. 2014 (2014), Article ID 85. · Zbl 1345.47048
[37] M. Suwannaprapa, N. Petrot, S. Suantai, Weak convergence theorems for split feasibility problems on zeros of the sum of monotone operators and fixed point sets in Hilbert spaces, Fixed Point Theory Appl. 2017 (2017), Article ID 6. · Zbl 1461.47036
[38] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000. · Zbl 0997.47002
[39] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese). · Zbl 1089.49500
[40] W. Takahashi, Y. Takeuchi, Y. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276-286. · Zbl 1134.47052
[41] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), 431-446. · Zbl 0997.90062
[42] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. · Zbl 0757.46033
[43] T. Yuying, S. Plubtieng, Strong convergence theorems by hybrid and shrinking projection methods for sums of two monotone operators, J. Inequal. Annal. 2017 (2017), Article ID 72. · Zbl 1382.47038
[44] C. Z˘alinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344-374. · Zbl 0519.49010
[45] D.L. Zhu, P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726. · Zbl 0855.47043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.