×

Random Fourier series with dependent random variables. (English) Zbl 1479.46064

Summary: Given a sequence of independent standard Gaussian variables \((Z_n)\), the classical Pisier algebra \(\mathcal{P}\) is the class of all continuous functions \(f\) on the unit circle \(\mathbb{T}\) such that for each \(t\in\mathbb{T}\), the random Fourier series \(\sum_{n\in\mathbb{Z}}{Z}_n\hat{f}(n)\times\exp(2\pi \mathrm{i}nt)\) converges in \(L^2\) and the corresponding sums constitute a Gaussian process that admits a continuous version. It was constructed by G. Pisier in [Isr. J. Math. 34, 38–44 (1979; Zbl 0428.46035)] to answer a long-standing question raised by Katznelson. In this paper, we consider the general random Fourier series \(\sum_{n\in\mathbb{Z}}{\xi}_n\hat{f}(n)\times\exp(2\pi\mathrm{i}nt)\) where \(\xi=(\xi_n)\) is a discrete Gaussian process of standard Gaussian random variables but with the restriction of independence relaxed and study the corresponding class \(\mathcal{P}(\xi)\) of continuous functions \(f\) on \(\mathbb{T}\). We obtain sufficient conditions (based on some spectral properties of the covariance matrix of \((\xi_n))\) for each of the relations \(\mathcal{P}\subset \mathcal{P} (\xi)\), \(\mathcal{P}(\xi)\subset \mathcal{P}\), and \(\mathcal{P}=\mathcal{P}(\xi)\). We illustrate these results by the classical fractional Gaussian noise. Whether in general \(\mathcal P(\xi)\) is also a Banach algebra is an open problem.

MSC:

46J10 Banach algebras of continuous functions, function algebras
42A61 Probabilistic methods for one variable harmonic analysis
42A20 Convergence and absolute convergence of Fourier and trigonometric series
60G15 Gaussian processes
60G10 Stationary stochastic processes

Citations:

Zbl 0428.46035
Full Text: DOI

References:

[1] Cohen, G.; Cuny, C., On Billard’s theorem for random Fourier series, Bull. Pol. Acad. Sci., Math., 53, 101-126 (2005) · Zbl 1112.42002 · doi:10.4064/ba53-1-5
[2] D’Ambrogi-Ola, B., Inverse Problem of Fractional Brownian Motion with Discrete Data (2009), PhD thesis: University of Helsinki, PhD thesis
[3] Gao, JB; Cao, Y.; Lee, J-M, Principal component analysis of 1/f^α noise, Phys. Lett, A, 314, 392-400 (2003) · Zbl 1031.65018
[4] Kahane, J-P, Some Random Series of Functions (1985), Cambrigde: Cambrigde Univ. Press, Cambrigde · Zbl 0571.60002
[5] Kahane, J-P; Byrnes, JS; Byrnes, JL; Hargreaves, KA; Berry, K., Some continuation of the work of Paley and Zygmund on random trigonometric series, Probability and Stochastic Methods in Analysis, with Applications, NATO ASI Ser., Ser. C, Math. Phys. Sci., 481-515 (1992), Dordrecht: Springer, Dordrecht · Zbl 0788.60011
[6] Ledoux, M.; Talagrand, M., Probability in Banach Spaces: Isometry and Processes (1991), Berlin: Springer, Berlin · Zbl 0748.60004 · doi:10.1007/978-3-642-20212-4
[7] M.B. Marcus and G. Pisier, Necessary and Sufficient Condition for the Uniform Convergence of Random Trigonometric Series, Lect. Notes Ser., Aarhus Univ., Vol. 50, Matematisk Institut, Aarhus Universitet, Aarhus, 1978. · Zbl 0409.60036
[8] Nourdin, I., Selected Aspects of Fractional Brownian Motion (2012), Springer, Milano: Bocconi Springer Ser, Springer, Milano · Zbl 1274.60006 · doi:10.1007/978-88-470-2823-4
[9] Pisier, G., A remarkable homogeneous Banach algebra, Isr. J. Math., 34, 38-44 (1979) · Zbl 0428.46035 · doi:10.1007/BF02761823
[10] Ronsin, S.; Biermé, H.; Moisan, L., The Billard theorem for multiple random Fourier series, J. Fourier Anal. Appl., 23, 1, 207-228 (2017) · Zbl 1370.42008 · doi:10.1007/s00041-016-9467-9
[11] Pedersen, TV, Some properties of the Pisier algebra, Math. Proc. Camb. Philos. Soc., 128, 343-354 (2000) · Zbl 0963.43004 · doi:10.1017/S0305004199004089
[12] Zafran, M., The dichotomy problem for homogeneous Banach algebras, Ann. Math., 108, 2, 97-105 (1978) · Zbl 0388.46036 · doi:10.2307/1970931
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.