×

Boundedness of singular integral operators on local Hardy spaces and dual spaces. (English) Zbl 1479.42061

The paper aims to provide necessary and sufficient conditions for the boundedness of inhomogeneous Calderón-Zygmund singular integral operators on the local Hardy spaces \(h^p(\mathbb{R}^n)\) and their duals. An inhomogeneous Calderón-Zygmund singular integral operator is a non-convolution integral operator \(T\) with a kernel \(\mathcal{K}(x,y)\) satisfying \begin{align*} |\mathcal{K}(x,y)| \leq C \min \left\{\frac{1}{|x-y|^n}, \frac{1}{|x-y|^{n +\delta}} \right\} \quad \text{for \(x \neq y\)} \end{align*} and \begin{align*} |\mathcal{K}(x,y) -\mathcal{K}(x,y^\prime)| + |\mathcal{K}(y,x) -\mathcal{K}(y^\prime,x)| \leq C \frac{|y-y^\prime|^\varepsilon}{|x-y|^{n+\varepsilon}}, \quad \text{whenever \(|y -y^\prime| <\frac{|x-y|}{2}\)}. \end{align*} where \(\varepsilon\) and \(\delta\) are constants such that \(\delta >0\) and \(0< \varepsilon \leq 1\). Let \(T\) be an inhomogeneous Calderón-Zygmund singular integral operator and \(\max \left\{\frac{n}{n+\varepsilon}, \frac{n}{n +\delta}\right\} < p \leq 1\). The authors in this paper prove that
(i)
if \(T^\ast (1) \in \tilde{\Lambda}_{n(1/p -1)}\) where \(\tilde{\Lambda}_{n(1/p -1)}\) is the homogeneous Lipschitz space, then \(T\) is bounded on \(h^p(\mathbb{R}^n)\);
(ii)
if \(T\) is bounded on \(h^p(\mathbb{R}^n)\), then \(T^\ast (1) \in \Lambda_{n(1/p -1)}\) where \(\Lambda_{n(1/p -1)}\) is the inhomogeneous Lipschitz space.
A similar result for the boundedness of \(T\) on the duals of \(h^p(\mathbb{R}^n)\) is also proved in the paper. Since pseudo-differential operators with symbols in \(S^0_{1, 0}\) are examples of inhomogeneous Calderón-Zygmund singular integral operators, the main results in the paper extend the corresponding result in D. Goldberg [Duke Math. J. 46, No. 1, 27–42 (1979; Zbl 0409.46060)] concerning boundedness of pseudo-differential operators on \(h^p(\mathbb{R}^n)\).

MSC:

42B35 Function spaces arising in harmonic analysis
42B30 \(H^p\)-spaces
42B25 Maximal functions, Littlewood-Paley theory
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Citations:

Zbl 0409.46060
Full Text: DOI

References:

[1] Bui H., Weighted Hardy spaces, Math. Nachr., 103, 45-62 (1981) · Zbl 0522.46034 · doi:10.1002/mana.19811030106
[2] Bui H., Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures, J. Funct. Anal., 55, 39-62 (1984) · Zbl 0638.46029 · doi:10.1016/0022-1236(84)90017-X
[3] Bui H.; Paluszyński M.; Taibleson M., Characterization of the Besov-Lipsehitz and Triebel-Lizorkin spaces the case q < 1, J. Fourier. Anal. Appl., 3, 837-846 (1997) · Zbl 0897.42010 · doi:10.1007/BF02656489
[4] Bui T.; Duong X.; Ly F., Maximal function characterizations for new local Hardy-type spaces on spaces of homogeneous type, Trans. Am. Math. Soc., 370, 7229-7292 (2018) · Zbl 1404.42043 · doi:10.1090/tran/7289
[5] Chang S. -Y. A.; Fefferman R., A continuous version of duality of H1 with BMO on the bidisc, Ann. Math., 112, 179-201 (1980) · Zbl 0451.42014 · doi:10.2307/1971324
[6] Chang S. -Y. A.; Fefferman R., Some recent developments in Fourier Analysis and Hp theory on product domains, Bull. Am. Math. Soc., 12, 1-43 (1985) · Zbl 0557.42007 · doi:10.1090/S0273-0979-1985-15291-7
[7] Coifman R. R., A real variable characterization of Hp, Stud. Math., 51, 269-274 (1974) · Zbl 0289.46037 · doi:10.4064/sm-51-3-269-274
[8] Coifman R. R.; Weiss G., Extensions of Hardy spaces and their use in analysis, Bull. Am. Math. Soc., 83, 569-645 (1977) · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[9] David G.; Journé J. L., A boundedness criterion for generalized Calderón-Zygmund operators, Ann. Math., 120, 2, 371-397 (1984) · Zbl 0567.47025 · doi:10.2307/2006946
[10] David G.; Journé J. L.; Semmes S., Operateurs de Calderón-Zygmund fonctions paraaccretive et interpolation, Rev. Mat. Iberoamericana, 1, 4, 1-56 (1985) · Zbl 0604.42014 · doi:10.4171/RMI/17
[11] Ding W.; Jiang L.; Zhu Y., Discrete Littlewood-Paley-Stein characterization and L2 atomic decomposition of local hardy spaces, Acta Math. Sin. Engl. Ser., 35, 10, 1681-1695 (2019) · Zbl 1425.42026 · doi:10.1007/s10114-019-8532-0
[12] Fefferman C.; Stein E. M., Hp sapces of several variables, Acta Math., 129, 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[13] Frazier M.; Jawerth B., A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93, 34-170 (1990) · Zbl 0716.46031 · doi:10.1016/0022-1236(90)90137-A
[14] Goldberg D., A local version of real hardy spaces, Duke Math. J., 46, 1, 27-42 (1979) · Zbl 0409.46060 · doi:10.1215/S0012-7094-79-04603-9
[15] Han Y.; Lee M.; Lin C., Calderón-Zygmund operators on product Hardy spaces, J. Funct. Anal., 258, 2834-2861 (2010) · Zbl 1197.42006 · doi:10.1016/j.jfa.2009.10.022
[16] Han Y.; Han Y.; Li J., Criterion of the boundedness of singular integrals on spaces of homogeneous type, J. Funct. Anal., 271, 12, 3423-3464 (2016) · Zbl 1350.42027 · doi:10.1016/j.jfa.2016.09.006
[17] Han Y.; Han Y.; Li J., Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss, Sci. China Math., 60, 2199-2218 (2017) · Zbl 1397.42013 · doi:10.1007/s11425-017-9152-4
[18] Hoepfner G.; Hounie J., Locally solvable vector fields and Hardy spaces, J. Funct. Anal., 247, 378-416 (2007) · Zbl 1116.35042 · doi:10.1016/j.jfa.2007.03.012
[19] Hounie, J.; Kapp, RAS, Pseudodifferential operators on local hardy spaces, J. Fourier. Anal. Appl., 15, 153-178 (2009) · Zbl 1178.35396 · doi:10.1007/s00041-008-9021-5
[20] Komori, Y., Calderon-Zygmund operators on \(H^p(\mathbb{R}^n)\), Sci. Math. Jpn., 4, 35-44 (2001)
[21] Komori, Y., Calderón-Zygmund operators on weighted \(H^p(\mathbb{R}^n)\), Hokkaido Math. J., 32, 673-684 (2003) · Zbl 1057.42013
[22] Lemarié, P., Continuité sur les espaces de Besov des opérateurs définis par des intégrales singuliéres, Ann. Inst. Fourier (Grenoble), 35, 4, 175-187 (1985) · Zbl 0555.47032 · doi:10.5802/aif.1033
[23] Meyer, Y.; Coifman, R., Wavelets Calderón-Zygmund and multilinear operators translated from the 1990 French original by D.H. Salinger Cambridge Studies in Advanced Mathematics 48 (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0776.42019
[24] Peloso, M.; Secco, S., Local Riesz transforms characterization of local Hardy spaces, Collect. Math., 59, 3, 299-320 (2008) · Zbl 1189.35398 · doi:10.1007/BF03191189
[25] Rychkov, VS, Littlewood-Paley theory and function spaces with \(A_p^{loc}\) weights, Math. Nachr., 224, 145-180 (2001) · Zbl 0984.42011 · doi:10.1002/1522-2616(200104)224:1<145::AID-MANA145>3.0.CO;2-2
[26] Stein, E., Harmonic Analysis Real-Variable Methods Orthogonality and Oscillatory Integrals (1993), Princeton: Princeton University Press, Princeton · Zbl 0821.42001
[27] Taibleson, M.; Weiss, G., The molecular characterization of certain Hardy spces, Asterisque, 77, 67-151 (1980) · Zbl 0472.46041
[28] Tang, L., Weighted local Hardy spaces and their applications, Ill. J. Math., 56, 2, 453-495 (2012) · Zbl 1408.42010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.