×

Two-dimensional inverse heat conduction problem in a quarter plane: integral approach. (English) Zbl 1479.35939

Summary: We consider a two-dimensional inverse heat conduction problem in the region \(\lbrace x>0, y >0 \rbrace\) with infinite boundary which consists to reconstruct the boundary condition \(f(y,t)=u(0,y,t)\) on one side from the measured temperature \(g(y,t)=u(1,y,t)\) on accessible interior region. The numerical solution of the direct problem is computed by a boundary integral equation method. The inverse problem is equivalent to an ill-posed integral equation. For its approximation we use the regularization of Tikhonov after the mollification of the noised data \(g_\delta\) of exact data \(g\). We show some numerical examples to illustrate the validity of the method.

MSC:

35R30 Inverse problems for PDEs
35K05 Heat equation
47A52 Linear operators and ill-posed problems, regularization
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Busby, Hr; Trujillo, Dm, Numerical solution to a two-dimensional inverse heat conduction problem, Int. J. Numer. Methods Eng., 21, 349-359 (1985) · Zbl 0555.65077 · doi:10.1002/nme.1620210211
[2] Chapko, R., On the numerical solution of direct and inverse problems for the heat equation in a semi-infinite region, J. Comput. Appl. Math., 108, 41-55 (1999) · Zbl 0943.65110 · doi:10.1016/S0377-0427(99)00099-0
[3] Chorfi, L.; Alem, L., Stable algorithm for identifying a source in the heat equation, Electron. J. Differ. Equ., 267, 1-14 (2015) · Zbl 1328.35065
[4] Costabel, M., Boundary integral operators for the heat equation, Integral Equ. Oper. Theory, 13, 4, 498-552 (1990) · Zbl 0715.35032 · doi:10.1007/BF01210400
[5] Eldén, L.; Berntsson, F.; Reginska, T., Wavelet and Fourier methods for solving the sideways heat equation, SIAM J. Sci. Comput., 21, 6, 2187-2205 (2000) · Zbl 0959.65107 · doi:10.1137/S1064827597331394
[6] Engl, Hw; Langthaler, T., Numerical solution of an inverse problem connected with continuous casting of steel, Z. Oper. Res., 9, 6, B185-B199 (1985) · Zbl 0591.90096
[7] Frankel, Ji, Residual-minimization least-squares method for inverse heat conduction, Comput. Math. Appl., 32, 4, 117-130 (1996) · Zbl 0858.65098 · doi:10.1016/0898-1221(96)00130-7
[8] Groetsch, Cw, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind (1984), Boston: Pitman (Advanced Publishing Program), Boston · Zbl 0545.65034
[9] Guo, L.; Murio, D., A mollified space-marching finite-different algorithm for the two-dimensional inverse heat conduction problem with slab symmetry, Inverse Probl., 7, 2, 247 (2011) · Zbl 0731.65108 · doi:10.1088/0266-5611/7/2/008
[10] Garshasbi, M.; Hassani, F., Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method, Bull. Iran. Math. Soc., 42, 5, 1039-1057 (2016) · Zbl 1373.80007
[11] Guenther, R.; Lee, J., Differential Equations of Mathematical Physics and Integral Equations (1988), New York: Dover, New York · Zbl 0879.35001
[12] Häo, Dn, A mollification method for ill-posed problems, Numer. Math., 68, 469-506 (1994) · Zbl 0817.65041 · doi:10.1007/s002110050073
[13] Hansen, Pc, Regularization tools version 4.0 for Matlab 7.3, Numer. Algorithms, 46, 2, 189-194 (2007) · Zbl 1128.65029 · doi:10.1007/s11075-007-9136-9
[14] Hsiao, Gc; Saranen, J., Boundary integral solution of the two-dimensional heat equation, Math. Methods Appl. Sci., 16, 2, 87-114 (1993) · Zbl 0772.45001 · doi:10.1002/mma.1670160203
[15] Jonas, P.; Louis, Ak, Approximate inverse for a one-dimensional inverse heat conduction problem, Inverse Probl., 16, 1, 175 (2000) · Zbl 0972.35187 · doi:10.1088/0266-5611/16/1/314
[16] Jia, Xz; Wang, Yb, A boundary integral method for solving inverse heat conduction problem, J. Inverse Ill Posed Probl., 14, 4, 375-384 (2006) · Zbl 1110.35103 · doi:10.1515/156939406777570987
[17] Kaiser, Th; Troltzsch, F., An inverse problem arising in the steel cooling process, Wiss. Z. Tech. Univ. Karl Marx Stadt, 29, 2, 212-218 (1987) · Zbl 0638.35083
[18] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems (2011), Berlin: Springer, Berlin · Zbl 1213.35004
[19] Lamm, Pk, A Survey of Regularization Methods for First-kind Volterra Equations. Surveys on Solution Methods for Inverse Problems, 53-82 (2000), Berlin: Springer, Berlin · Zbl 0972.65120
[20] Liu, Y.; Murio, Da, Numerical experiments in 2-D IHCP on bounded domains Part I: The “interior” cube problem, Comput. Math. Appl., 31, 1, 15-32 (1996) · Zbl 0848.65091 · doi:10.1016/0898-1221(95)00180-7
[21] Lesnic, D.; Elliott, L.; Ingham, Db, Application of the boundary element method to inverse heat conduction problems, Int. J. Heat Mass Transf., 39, 7, 1503-1517 (1996) · Zbl 0963.74568 · doi:10.1016/0017-9310(95)00229-4
[22] Murio, Da, The Mollification Method and the Numerical Solution of Ill-Posed Problems (2011), New York: Wiley, New York
[23] Piessens, R.; Verbaeten, P., Numerical solution of the Abel integral equation, BIT Numer. Math., 13, 4, 451-457 (1973) · Zbl 0266.65081 · doi:10.1007/BF01933409
[24] Qian, Z.; Fu, C-L, Regularization strategies for a two-dimensional inverse heat conduction problem, Inverse Probl., 23, 3, 1053-1068 (2007) · Zbl 1118.35073 · doi:10.1088/0266-5611/23/3/013
[25] Reinhardt, H-J, A numerical method for the solution of two-dimensional inverse heat conduction problems, Int. J. Numer. Methods Eng., 32, 2, 363-383 (1991) · Zbl 0759.65088 · doi:10.1002/nme.1620320209
[26] Weir, Gj, Surface mounted heat flux sensors, ANZIAM J., 7, 3, 281-294 (1986) · Zbl 0612.45002
[27] Wirgin, A.: The inverse crime. arXiv preprint arXiv:math/0401050 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.