×

Fractional diffusion equation degenerating in the initial hyperplane. (English. Ukrainian original) Zbl 1479.35925

Ukr. Math. J. 73, No. 3, 433-446 (2021); translation from Ukr. Mat. Zh. 73, No. 3, 370-380 (2021).
Summary: We consider a fractional extension of the parabolic equation degenerating in the initial hyperplane. For this equation, we construct and investigate the fundamental solution of the Cauchy problem and find the solution of the inhomogeneous equation.

MSC:

35R11 Fractional partial differential equations
35A08 Fundamental solutions to PDEs
35K15 Initial value problems for second-order parabolic equations
Full Text: DOI

References:

[1] Bologna, M.; West, BJ; Grigolini, P., Renewal and memory origin of anomalous diffusion: a discussion of their joint action, Phys. Rev. E, 88 (2013) · doi:10.1103/PhysRevE.88.062106
[2] Bologna, M.; Svenkeson, A.; West, BJ; Grigolini, P., Diffusion in heterogeneous media: an iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients, J. Comput. Phys., 293, 297-311 (2015) · Zbl 1349.82003 · doi:10.1016/j.jcp.2014.08.027
[3] Kim, K.; Lee, K., On the heat diffusion starting with degeneracy, J. Different. Equat., 262, 2722-2744 (2017) · Zbl 1361.35100 · doi:10.1016/j.jde.2016.11.013
[4] S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Birkhäuser, Basel (2004). · Zbl 1062.35003
[5] Friedman, A.; Schuss, Z., Degenerate evolution equation in Hilbert space, Trans. Amer. Math. Soc., 161, 401-427 (1971) · Zbl 0229.35053 · doi:10.1090/S0002-9947-1971-0283623-9
[6] Gorbachuk, ML; Pivtorak, NI, Solutions of evolution equations of parabolic type with degeneration, Different. Equat., 21, 892-897 (1985) · Zbl 0657.34039
[7] Hahn, MG; Kobayashi, K.; Umarov, S., Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion, Proc. Amer. Math. Soc., 139, 691-705 (2011) · Zbl 1218.60030 · doi:10.1090/S0002-9939-2010-10527-0
[8] Bazhlekova, EG, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal., 3, 213-230 (2000) · Zbl 1041.34046
[9] Gorenflo, R.; Mainardi, F., On the fractional Poisson process and the discretized stable subordinator, Axioms, 4, 321-344 (2015) · Zbl 1415.60051 · doi:10.3390/axioms4030321
[10] Meerschaert, MM; Scheffler, H-P, Triangular array limits for continuous time random walks, Stochast. Proc. Appl., 118, 1606-1633 (2008) · Zbl 1153.60023 · doi:10.1016/j.spa.2007.10.005
[11] Meerschaert, MM; Straka, P., Inverse stable subordinators, Math. Model. Nat. Phenom., 8, 1-16 (2013) · Zbl 1274.60153 · doi:10.1051/mmnp/20138201
[12] Kochubei, AN, Fractional-parabolic systems, Potential Anal., 37, 1-30 (2012) · Zbl 1259.35218 · doi:10.1007/s11118-011-9243-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.