×

Funnel control of the Fokker-Planck equation for a multidimensional Ornstein-Uhlenbeck process. (English) Zbl 1479.35860

In this paper the feasibility of funnel control techniques for the Fokker–Planck equation corresponding to a multidimensional Ornstein-Uhlenbeck process on an unbounded spatial domain is explored. First, using weighted Lebesgue and Sobolev spaces, an auxiliary operator is defined via a suitable sesquilinear form. This operator is then transformed to the desired Fokker-Planck operator. The author shows that any mild solution of the controlled Fokker-Planck equation (which is a probability density) has a covariance matrix that exponentially converges to a constant matrix. After a simple feedforward control approach is discussed, the author establishes feasibility of funnel control in the presence of disturbances by exploiting semigroup theory. The results are illustrated by some simulations.

MSC:

35Q84 Fokker-Planck equations
35K55 Nonlinear parabolic equations
93C40 Adaptive control/observation systems

References:

[1] R. A. Adams, Sobolev Spaces, Pure Appl. Math. 65, Academic Press, New York, 1975. · Zbl 0314.46030
[2] M. Annunziato and A. Borz\`\i, Optimal control of probability density functions of stochastic processes, Math. Model. Anal., 15 (2010), pp. 393-407. · Zbl 1216.35154
[3] M. Annunziato and A. Borz\`\i, A Fokker-Planck control framework for multidimensional stochastic processes, J. Comput. Appl. Math., 237 (2013), pp. 487-507. · Zbl 1251.35196
[4] W. Arendt and S. Bu, Tools for maximal regularity, Math. Proc. Cambridge Philos. Soc., 134 (2003), pp. 317-336. · Zbl 1041.47018
[5] W. Arendt, R. Chill, C. Seifert, H. Vogt, and J. Voigt, Form methods for evolution equations, and applications, Lecture notes, 18th Internet Seminar on Evolution Equations, 2015.
[6] W. Arendt and A. F. M. ter Elst, From forms to semigroups, in Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, W. Arendt, J. Ball, J. Behrndt, K. H. Förster, V. Mehrmann, and C. Trunk, eds., Operat. Theory Adv. Appl. 221, Birkhäuser, Basel, 2012, pp. 47-69. · Zbl 1272.47003
[7] T. Berger, T. Breiten, M. Puche, and T. Reis, Funnel control for the monodomain equations with the FitzHugh-Nagumo model, J. Differential Equations, 286 (2021), pp. 164-214. · Zbl 1462.35174
[8] T. Berger, A. Ilchmann, and E. P. Ryan, Funnel control of nonlinear systems, Math. Control Signals Syst., 33 (2021), pp. 151-194. · Zbl 1461.93246
[9] T. Berger, H. H. Lê, and T. Reis, Funnel control for nonlinear systems with known strict relative degree, Automatica, 87 (2018), pp. 345-357. · Zbl 1378.93059
[10] T. Berger, S. Otto, T. Reis, and R. Seifried, Combined open-loop and funnel control for underactuated multibody systems, Nonlinear Dynam., 95 (2019), pp. 1977-1998. · Zbl 1432.93102
[11] T. Berger, M. Puche, and F. L. Schwenninger, Funnel Control for a Moving Water Tank, https://arxiv.org/abs/1902.00586, 2019. · Zbl 1447.93163
[12] T. Berger, M. Puche, and F. L. Schwenninger, Funnel control in the presence of infinite-dimensional internal dynamics, Systems Control Lett., 139 (2020), 104678. · Zbl 1447.93163
[13] T. Berger and A.-L. Rauert, A universal model-free and safe adaptive cruise control mechanism, in Proceedings of MTNS 2018, Hong Kong, 2018, pp. 925-932.
[14] T. Berger and A.-L. Rauert, Funnel cruise control, Automatica, 119 (2020), 109061. · Zbl 1451.93185
[15] T. Berger and T. Reis, Zero dynamics and funnel control for linear electrical circuits, J. Franklin Inst., 351 (2014), pp. 5099-5132. · Zbl 1307.93339
[16] T. Breiten, K. Kunisch, and L. Pfeiffer, Control strategies for the Fokker-Planck equation, ESAIM Control Optim. Calc. Var., 24 (2018), pp. 741-763. · Zbl 1403.35298
[17] Y. Chen, T. T. Georgiou, and M. Pavon, Optimal steering of a linear stochastic system to a final probability distribution, Part II, IEEE Trans. Automat. Control, 61 (2016), pp. 1170-1180. · Zbl 1359.93533
[18] M. Chipot, Elements of Nonlinear Analysis, Birkhäuser, Basel, 2000. · Zbl 0964.35002
[19] L. de Simon, Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (2001), pp. 205-223. · Zbl 0196.44803
[20] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math., AMS, Providence, RI, 2010. · Zbl 1194.35001
[21] B. Farkas and S.-A. Wegner, Variations on Barbălat’s lemma, Amer. Math. Monthly, 123 (2016), pp. 825-830. · Zbl 1391.26005
[22] A. Fleig and L. Grüne, Estimates on the minimal stabilizing horizon length in model predictive control for the Fokker-Planck equation, IFAC-PapersOnLine, 49 (2016), pp. 260-265.
[23] A. Fleig and R. Guglielmi, Bilinear optimal control of the Fokker-Planck equation, IFAC-PapersOnLine, 49 (2016), pp. 254-259.
[24] C. M. Hackl, Non-identifier Based Adaptive Control in Mechatronics: Theory and Application, Lecture Notes in Control and Inform. Sci. 466, Springer-Verlag, Cham, Switzerland, 2017. · Zbl 1371.93002
[25] R. Hosfeld, B. Jacob, and F. Schwenninger, Input-to-State Stability of Unbounded Bilinear Control Systems, https://arxiv.org/abs/1811.08470v3, 2021.
[26] A. Ilchmann, Decentralized tracking of interconnected systems, in Mathematical System Theory, K. Hüper and J. Trumpf, eds., CreateSpace, 2013, pp. 229-245.
[27] A. Ilchmann, E. P. Ryan, and C. J. Sangwin, Tracking with prescribed transient behaviour, ESAIM Control Optim. Calc. Var., 7 (2002), pp. 471-493. · Zbl 1044.93022
[28] A. Ilchmann, T. Selig, and C. Trunk, The Byrnes-Isidori form for infinite-dimensional systems, SIAM J. Control Optim., 54 (2016), pp. 1504-1534. · Zbl 1339.93032
[29] A. Ilchmann and S. Trenn, Input constrained funnel control with applications to chemical reactor models, Systems Control Lett., 53 (2004), pp. 361-375. · Zbl 1157.93426
[30] A. Isidori, Nonlinear Control Systems, 3rd ed., Comm. Control Engrg. Ser., Springer-Verlag, Berlin, 1995. · Zbl 0878.93001
[31] J. Johnson, On the spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb’s inequality, Integral Equations Operator Theory, 36 (2000), pp. 288-324. · Zbl 1023.58012
[32] A. Y. Khapalov, Controllability of Partial Differential Equations Governed by Multiplicative Controls, Lecture Notes in Math. 1995, Springer-Verlag, Berlin, 2010. · Zbl 1210.93005
[33] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, Switzerland, 1995. · Zbl 0816.35001
[34] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer-Verlag, Berlin, 2003. · Zbl 1025.60026
[35] S. Primak, V. Kontorovich, and V. Lyandres, Stochastic Methods and Their Applications to Communications, John Wiley and Sons, Hoboken, NJ, 2004. · Zbl 1081.60001
[36] P. E. Protter, Stochastic Integration and Differential Equations, Stoch. Model. Appl. Probab. 21, Springer-Verlag, Berlin, 2005.
[37] M. Puche, T. Reis, and F. L. Schwenninger, Funnel control for boundary control systems, Evol. Equ. Control Theory, 10 (2021), pp. 519-544, doi:10.3934/eect.2020079. · Zbl 1471.93141
[38] T. Reis and T. Selig, Funnel control for the boundary controlled heat equation, SIAM J. Control Optim., 53 (2015), pp. 547-574. · Zbl 1312.93058
[39] L. M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal activity, Biol. Cybernet., 35 (1979), pp. 1-9. · Zbl 0414.92010
[40] R. Schöberl and J. Zhu, Stochastic volatility with an Ornstein-Uhlenbeck process: An extension, European Finance Review, 3 (1999), pp. 23-46. · Zbl 1028.91026
[41] A. Senfelds and A. Paugurs, Electrical drive DC link power flow control with adaptive approach, in Proceedings of the 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, Riga, Latvia, 2014, pp. 30-33.
[42] O. Staffans, Well-Posed Linear Systems, Encyclopedia Math. Appl. 103, Cambridge University Press, Cambridge, UK, 2005. · Zbl 1057.93001
[43] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser, Basel, 2009. · Zbl 1188.93002
[44] G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev., 36 (1930), pp. 823-841. · JFM 56.1277.03
[45] W. Walter, Ordinary Differential Equations, Springer-Verlag, New York, 1998. · Zbl 0991.34001
[46] Y. Xu, Orthogonal Polynomials of Several Variables, https://arxiv.org/abs/1701.02709v1, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.