×

Uniqueness of weak solutions for a biharmonic problem. (English) Zbl 1479.35320

Summary: We prove the existence, uniqueness, and several properties of weak solutions of a \(p ( x )\)-biharmonic problem. Our analysis utilizes a result from the monotone operator theory and some theory on the generalized Lebesgue and Sobolev spaces.

MSC:

35J30 Higher-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Halsey, T. C., Electrorheological fluids, Science, 258, 761-766 (1992)
[2] Råuz̆ic̆ka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0962.76001
[3] Ayoujil, A.; El Amrouss, A. R., On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal., 71, 4916-4926 (2009) · Zbl 1167.35380
[4] Ge, B.; Zhou, Q.; Wu, Y., Eigenvalues of the \(p ( x )\)-biharmonic operator with indefinite weight, Z. Angew. Math. Phys., 66, 1007-1021 (2015) · Zbl 1319.35147
[5] Heidarkhani, S.; Afrouzi, G. A.; Moradi, S.; Caristi, G., Giuseppe a variational approach for solving \(p ( x )\)-biharmonic equations with Navier boundary conditions, Electron. J. Differ. Equ., Paper No. 25, 15 pp (2017) · Zbl 1381.35036
[6] Kong, L., Multiple solutions for fourth order elliptic problems with \(p ( x )\)-biharmonic operators, Opuscula Math., 36, 252-264 (2016) · Zbl 1339.35130
[7] Kong, L., Eigenvalues for a fourth order elliptic problem, Proc. Amer. Math. Soc., 143, 249-258 (2015) · Zbl 1317.35166
[8] Benedikt, J.; Drábek, P., Estimates of the principal eigenvalue of the \(p\)-biharmonic operator, Nonlinear Anal., 75, 5374-5379 (2012) · Zbl 1244.35096
[9] Ghergu, M., A biharmonic equation with singular nonlinearity, Proc. Edinburgh Math. Soc., 55, 155-166 (2012) · Zbl 1237.35044
[10] Lazzo, M.; Schmidt, P. G., Oscillatory radial solutions for subcritical biharmonic equations, J. Differential Equations, 247, 1479-1504 (2009) · Zbl 1216.35053
[11] Lu, Y.; Fu, Y., Multiplicity results for solutions of \(p\)-biharmonic problem, Nonlinear Anal., 190, Article 111596 pp. (2020) · Zbl 1427.35086
[12] Zeidler, E., Nonlinear Funct. Anal. and its Appl., II/B (1985)
[13] Edmunds, D.; Rákosník, J., Sobolev embeddings with variable exponent, Studia Math., 143, 267-293 (2000) · Zbl 0974.46040
[14] Fan, X.; Han, X., Existence and multiplicity of solutions for \(p ( x )\)-Laplacian equations in \(R^N\), Nonlinear Anal., 59, 173-188 (2004) · Zbl 1134.35333
[15] Fan, X.; Zhao, D., On the spaces \(L^{p ( x )} ( \Omega )\) and \(W^{m , p ( x )} ( \Omega )\), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041
[16] Kovác̆ik, O.; Rákosník, On spaces \(L^{p ( x )}\) and \(W^{m , p ( x )}\), Czechoslovak Math. J., 41, 592-618 (1991) · Zbl 0784.46029
[17] Zang, A.; Fu, Y., Interpolation inequalities for derivatives in variable exponent lebesgue-Sobolev spaces, Nonlinear Anal., 69, 3629-3636 (2008) · Zbl 1153.26312
[18] Simon, J., Regularitè de la solution d \({}^,\) une equation non lineaire dans \(\text{R}^N\), (Bénilan, P.; Robert, J., Journes D’Analyse Non Linaire (Proc. Conf. Besanon, 1977). Journes D’Analyse Non Linaire (Proc. Conf. Besanon, 1977), Lecture Notes in Math, vol. 665 (1978), Springer-Verlag: Springer-Verlag New York), 205-227 · Zbl 0402.35017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.