×

Existence and concentration behavior of solutions for the logarithmic Schrödinger-Bopp-Podolsky system. (English) Zbl 1479.35277

Summary: In this paper, we study the following logarithmic Schrödinger-Bopp-Podolsky system \[ \left\{\begin{array}{ll} -\varepsilon^2\Delta u+V(x)u-\phi u=u \log u^2,& \text{ in }\mathbb{R}^3,\\ -\varepsilon^2\Delta \phi +\varepsilon^4\Delta^2\phi =4\pi u^2, &\text{ in }\mathbb{R}^3, \end{array}\right. \] where \(\varepsilon\) is a small positive parameter and \(V(x)\in C(\mathbb{R}^3,\mathbb{R})\). Under the global condition on potential \(V(x)\), we prove the existence of positive solution \(u_{\varepsilon}\in H^1(\mathbb{R}^3)\) of above system for \(\varepsilon >0\) small enough by applying the Variational Methods developed by Szulkin for the functional which is a sum of a \(C^1\) functional with a convex lower semicontinuous functional. Moreover, we also investigate the concentration behavior of \(\{u_{\varepsilon}\}\) as \(\varepsilon \rightarrow 0\).

MSC:

35J10 Schrödinger operator, Schrödinger equation
35J61 Semilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J50 Variational methods for elliptic systems
Full Text: DOI

References:

[1] Bopp, F., Eine Lineare Theorie des Elektrons, Ann. Phys., 430, 345-384 (1940) · JFM 66.1411.03 · doi:10.1002/andp.19404300504
[2] Podolsky, B., A generalized electrodynamics, Phys. Rev., 62, 68-71 (1942) · doi:10.1103/PhysRev.62.68
[3] Frenkel, F., \(4/3\) problem in classical electrodynamics, Phys. Rev. E, 54, 5859-5862 (1996) · doi:10.1103/PhysRevE.54.5859
[4] d’venia, P., Siciliano, G.: Nonlinear Schrödinger equation in the Bopp-Podolsky electrodynamics: solutions in the electrostatic case. J. Differ. Equ. 267, 1025-1065 (2019) · Zbl 1432.35080
[5] Bertin, MC; Pimentel, BM; Valccel, CE; Zambrano, GER, Hamilton-Jacobi formalism for Podolskys electromagnetic theory on the null-plane, J. Math. Phys., 58, 082902 (2017) · Zbl 1375.78005 · doi:10.1063/1.4999846
[6] Bonin, C.A., Pimentel, B.M., Ortega, P.H.: Multipole Expansion in Generalized Electrodynamics. preprint, arXiv:1608.00902 · Zbl 1471.78004
[7] Bufalo, R.; Pimentel, BM; Soto, DE, Causal approach for the electron-positron scattering in generalized quantum electrodynamics, Phys. Rev. D, 90, 085012 (2014) · doi:10.1103/PhysRevD.90.085012
[8] Bufalo, R.; Pimentel, BM; Soto, DE, Normalizability analysis of the generalized quantum electrodynamics from the causal point of view, Int. J. Mod. Phys. A, 32, 1750165 (2017) · Zbl 1375.81238 · doi:10.1142/S0217751X17501652
[9] Yang, J.; Chen, HB; Liu, SL, The existence of nontrivial solution of a class of Schrödinger-Bopp-Podolsky system with critical growth, Bound. Value Prob., 2020, 144 (2020) · Zbl 1489.35071 · doi:10.1186/s13661-020-01442-0
[10] Mascaro, B., Siciliano, G.: Positive solutions for a Schrödinger-Bopp-Podolsky system. arXiv:2009.08531v1 [math.AP] 17 Sep 2020
[11] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224, 2nd edn. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1983) · Zbl 0562.35001
[12] Rabinowitz, P.H.: Minimax Methods in Critical Points Theory with Application to Differential Equations, CBMS Regional Conf. Ser. Math. vol. 65. Am. Math. Soc. Providence (1986) · Zbl 0609.58002
[13] Struwe, M., Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (1996), Berlin: Springer, Berlin · Zbl 0864.49001
[14] Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications. vol. 24, Birkhäuser Boston Inc., Boston (1996) · Zbl 0856.49001
[15] Zloshchastiev, KG, Logarithmic nonlinearity in the theories of quantum gravity: origin of time and observational consequences, Grav. Cosmol., 16, 288-297 (2010) · Zbl 1232.83044 · doi:10.1134/S0202289310040067
[16] d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16, 1350032 (2014) · Zbl 1292.35259
[17] Degiovanni, M.; Zani, S., Multiple solutions of semilinear elliptic equations with one-sided growth conditions, nonlinear operator theory, Math. Comput. Model., 32, 1377-1393 (2000) · Zbl 0970.35038 · doi:10.1016/S0895-7177(00)00211-9
[18] d’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38, 5207-5216 (2015) · Zbl 1334.35408
[19] Squassina, M.; Szulkin, A., Multiple solutions to logarithmic Schrödinger equations with periodic potential, Cal. Var. Partial Differ. Equ., 54, 585-597 (2015) · Zbl 1326.35358 · doi:10.1007/s00526-014-0796-8
[20] Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77-109 (1986) · Zbl 0612.58011
[21] Tanaka, K., Zhang, C.: Multi-bump solutions for logarithmic Schrödinger. Cal. Var. Partial Differ. Equ. doi:10.1007/s00526-017-1122-z · Zbl 1383.35217
[22] Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437, 241-254 (2016) · Zbl 1333.35010
[23] Alves, CO; de Morais Filho, DC, Existence and concentration of positive solutions for a Schrödinger logarithmic equation, Z. Angew. Math. Phys., 69, 144 (2018) · Zbl 1411.35090 · doi:10.1007/s00033-018-1038-2
[24] Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Math. 14. AMS, Providence (2001) · Zbl 0966.26002
[25] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Anal. Inst. H. Poincaré, Sect. C 1, 223-253 (1984) · Zbl 0704.49004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.