×

On the solvability of one class of third-order differential equations. (English) Zbl 1479.35240

Ukr. Math. J. 73, No. 3, 367-383 (2021) and Ukr. Mat. Zh. 73, No. 3, 314-328 (2021).
Summary: We consider a one-dimensional mixed problem for one class of third-order partial differential equations with nonlinear right-hand side. The concept of generalized solution of this problem is introduced. By the Fourier method, the problem of existence and uniqueness of generalized solutions for this problem is reduced to the problem of solvability of a countable system of nonlinear integrodifferential equations. By using Bellman’s inequality, we prove the uniqueness of generalized solution. Under certain conditions imposed on the initial functions and the right-hand side of the equation, the existence theorem is proved for the generalized solution by the method of successive approximations.

MSC:

35G31 Initial-boundary value problems for nonlinear higher-order PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Ashyralyev, A.; Belakroum, K., On the stability of nonlocal boundary value problem for a third order PDE, AIP Conf. Proc., 2183 (2019) · doi:10.1063/1.5136174
[2] Amirov, S.; Kozhanov, AI, A mixed problem for a class of strongly nonlinear higher-order equations of Sobolev type, Dokl. Math., 88, 1, 446-448 (2013) · Zbl 1277.35137 · doi:10.1134/S1064562413040236
[3] Yu. P. Apakov and B. Yu. Irgashev, “Boundary-value problem for a degenerate high-odd-order equation,” Ukr. Math. Zh., 66, No. 10, 1318-1331 (2015); English translation: Ukr. Math. J., 66, No. 10, 1475-1490 (2015). · Zbl 1348.35056
[4] Latrous, C.; Memou, A., A three-point boundary value problem with an integral condition for a third-order partial differential equation, Abstr. Appl. Anal., 2005, 1, 33-43 (2005) · Zbl 1077.35044 · doi:10.1155/AAA.2005.33
[5] Apakov, Y.; Rutkauskas, S., On a boundary value problem to third order PDE with multiple characteristics, Nonlin. Anal. Model. Control, 16, 3, 255-269 (2011) · Zbl 1276.35055 · doi:10.15388/NA.16.3.14092
[6] Kudu, M.; Amirali, I., Method of lines for third order partial differential equations, J. Appl. Math. Phys., 2, 2, 33-36 (2014) · doi:10.4236/jamp.2014.22005
[7] Ashyralyev, A.; Arjmand, D.; Koksal, M., Taylor’s decomposition on four points for solving third-order linear time-varying systems, J. Franklin Inst., 346, 651-662 (2009) · Zbl 1298.65107 · doi:10.1016/j.jfranklin.2009.02.017
[8] Ashyralyev, A.; Arjmand, D., A note on the Taylor’s decomposition on four points for a third-order differential equation, Appl. Math. Comput., 188, 2, 1483-1490 (2007) · Zbl 1130.65068
[9] Belakroum, K.; Ashyralyev, A.; Guezane-Lakoud, A., A note on the nonlocal boundary value problem for a third order partial differential equation, AIP Conf. Proc., 1759 (2016) · doi:10.1063/1.4959635
[10] A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Operator Theory: Advances and Applications, 148, Birkhäuser, Basel etc. (2004). · Zbl 1060.65055
[11] Belakroum, K.; Ashyralyev, A.; Guezane-Lakoud, A., A note on the nonlocal boundary value problem for a third order partial differential equation, Filomat, 32, 3, 801-808 (2018) · Zbl 1499.35181 · doi:10.2298/FIL1803801B
[12] Ashyralyev, A.; Belakroum, K.; Guezane-Lakoud, A., Stability of boundary-value problems for third-order partial differential equations, Electron. J. Different. Equat., 53, 1-11 (2017) · Zbl 1370.35084
[13] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. JRE, 50, 10, 2061-2070 (1962)
[14] Reiko, A.; Yojiro, H., On global solutions for mixed problem of a semilinear differential equation, Proc. Japan Acad., 39, 10, 721-725 (1963) · Zbl 0173.11804
[15] Jamaguti, M., The asymptotic behavior of the solution of a semilinear partial differential equation related to an active pulse transmission line, Proc. Japan Acad., 39, 10, 726-730 (1963) · Zbl 0173.11901
[16] Greenberg, JM; MacCamy, RC; Mizel, VJ, On the existence, uniqueness and stability of solutions of the equation σ′(u_x)u_xx + λu_xtx = ρ_0u_tt, J. Math. Mech., 17, 7, 707-728 (1968) · Zbl 0157.41003
[17] Greenberg, JM, On the existence, uniqueness and stability of solutions of the equation ρ_0u_tt = E(u_x) · u_xx + λu_xxt, J. Math. Anal. Appl., 25, 575-591 (1969) · Zbl 0192.44803 · doi:10.1016/0022-247X(69)90257-1
[18] Greenberg, JM; MacCamy, RC, On the exponential stability solutions of the equation E(u_x) · u_xx +λu_xtx = ρu_tt, J. Math. Anal. Appl., 31, 2, 406-417 (1970) · Zbl 0219.35010 · doi:10.1016/0022-247X(70)90034-X
[19] Davis, PL, On the existence, uniqueness and stability of solutions of a nonlinear functional differential equation, J. Math. Anal. Appl., 34, 1, 128-140 (1971) · Zbl 0226.35085 · doi:10.1016/0022-247X(71)90163-6
[20] Kozhanov, AI, Mixed problem for some classes of third-order nonlinear equations, Mat. Sb., 118, 4, 504-522 (1982)
[21] Gabov, SA; Malysheva, GY; Sveshnikov, AG, On one equation of composite type related to the oscillations of stratified fluid, Differents. Uravn., 19, 7, 1171-1180 (1983) · Zbl 0541.76144
[22] B. A. Iskenderov and V. Q. Sardarov, “Mixed problem for Boussinesq equation in cylindrical domain and behavior of its solution at t → + ∞,” Trans. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 22, No. 4, 117-134 (2002). · Zbl 1243.35147
[23] A. B. Aliev and A. A. Kazimov, “The asymptotic behavior of weak solution of Cauchy problem for a class Sobolev type semilinear equation,” Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 26, No. 4, 23-30 (2006). · Zbl 1170.35334
[24] Yuldashev, TK, On an optimal control problem for a nonlinear pseudohyperbolic equation, Model. Anal. Inform. Sist., 20, 5, 78-89 (2013) · doi:10.18255/1818-1015-2013-5-78-89
[25] Rasulova, GA, Study of mixed problem for one class of third-order quasilinear differential equations, Differents. Uravn., 3, 9, 1578-1591 (1967) · Zbl 0156.10505
[26] Kozhanov, AI, Mixed problem for one class of nonclassical equations, Differents. Uravn., 15, 2, 272-280 (1979) · Zbl 0399.35022
[27] O. A. Ladyzhenskaya, Mixed Problem for Hyperbolic Equations [in Russian], Gostekhizdat, Moscow (1953).
[28] Laptev, GI, On one third-order quasilinear partial differential equation, Differents. Uravn., 24, 7, 1270-1272 (1988) · Zbl 0683.35043
[29] Davis, PL, A quasilinear hyperbolic and related third-order equations, J. Math. Anal. Appl., 51, 3, 596-606 (1975) · Zbl 0312.35018 · doi:10.1016/0022-247X(75)90110-9
[30] Zhamalov, RS, Directional derivative problem for one third-order equation, Kraev. Zadach. Neklassich. Uravn. Mat. Fiz., 17, 115-116 (1989)
[31] K. I. Khudaverdiyev and A. A. Veliyev, Study of One-Dimensional Mixed Problem for One Class of Third Order Pseudohyperbolic Equations with Nonlinear Operator Right-Hand Side [in Russian], Chashioglu, Baku (2010).
[32] Z. I. Khalilov, “A new method for solving the equations of vibrations of elastic system,” Izv. Azerb. Branch Acad. Sci. USSR, No. 4, 168-169 (1942).
[33] Il’in, VA, On the solvability of mixed problem for hyperbolic and parabolic equations, Uspekhi Mat. Nauk, 15, 2, 97-154 (1960) · Zbl 0116.29802
[34] K. I. Hudaverdiev, “On generalized solutions of one-dimensional mixed problem for a class of quasilinear differential equations,” Azerb. Gos. Univ. Uchen. Zap., Ser. Fiz.-Mat. Nauk., No. 4, 29-42 (1965).
[35] V. A. Chernyatin, Justification of the Fourier Method for the Mixed Problem for Partial Differential Equations [in Russian], Izd. Moscow Univ., Moscow (1991). · Zbl 0743.35002
[36] Bilalov, BT; Guseynov, ZG, K-Bessel and K-Hilbert systems. K-bases, Dokl. Akad. Nauk, 429, 3, 298-300 (2009)
[37] Bilalov, BT; Ismailov, AI, Bases and tensor product, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25, 4, 15-20 (2005) · Zbl 1119.46016
[38] B. T. Bilalov, Some Questions of Approximation, Elm, Baku (2016).
[39] A. Zygmund, Trigonometric Series, Mir, Moscow (1965). · Zbl 0131.06703
[40] S. Kachmazh and G. Steinhous, Theory of Orthogonal Series, GIFML, Moscow (1958).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.