×

Equivariant splitting of the Hodge-de Rham exact sequence. (English) Zbl 1479.14030

Summary: Let \(X\) be an algebraic curve with a faithful action of a finite group \(G\) over a field \(k\). We show that if the Hodge-de Rham short exact sequence of \(X\) splits \(G\)-equivariantly then the action of \(G\) on \(X\) is weakly ramified. In particular, this generalizes the result of Köck and Tait for hyperelliptic curves. We discuss also converse statements and tie this problem to lifting coverings of curves to the ring of Witt vectors of length 2.

MSC:

14F40 de Rham cohomology and algebraic geometry
14G17 Positive characteristic ground fields in algebraic geometry
14H37 Automorphisms of curves
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)

References:

[1] Bertin, J.; Mézard, A., Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math., 141, 1, 195-238 (2000) · Zbl 0993.14014 · doi:10.1007/s002220000071
[2] Cartier, P., Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, 244, 426-428 (1957) · Zbl 0077.04502
[3] Cornelissen, G.; Kato, F., Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J., 116, 3, 431-470 (2003) · Zbl 1092.14032 · doi:10.1215/S0012-7094-03-11632-4
[4] Deligne, P.; Illusie, L., Relèvements modulo \(p^2\) et décomposition du complexe de de Rham, Invent. Math., 89, 2, 247-270 (1987) · Zbl 0632.14017 · doi:10.1007/BF01389078
[5] Dummit, DS; Foote, RM, Abstract Algebra (2004), Hoboken: Wiley, Hoboken · Zbl 1037.00003
[6] Grothendieck, A.: Sur quelques points d’algèbre homologique. Tôhoku Math. J. 2(9), 119-221 (1957). doi:10.2748/tmj/1178244839 · Zbl 0118.26104
[7] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, no. 52. Springer, New York, Heidelberg (1977) · Zbl 0367.14001
[8] Jacobson, N.: Basic Algebra. I, 2nd edn. W. H. Freeman and Company, New York (1985) · Zbl 0557.16001
[9] Köck, B.: Galois structure of Zariski cohomology for weakly ramified covers of curves. Am. J. Math. 126(5), 1085-1107 (2004). http://muse.jhu.edu/journals/american_journal_of_mathematics/v126/126.5k”ock.pdf · Zbl 1095.14027
[10] Köck, B.; Tait, J., On the de-Rham cohomology of hyperelliptic curves, Res. Number Theory, 4, 2, 4:19 (2018) · Zbl 1470.14044 · doi:10.1007/s40993-018-0111-4
[11] Kontogeorgis, A., On the tangent space of the deformation functor of curves with automorphisms, Algebra Number Theory, 1, 2, 119-161 (2007) · Zbl 1183.14043 · doi:10.2140/ant.2007.1.119
[12] Milne, J.S.: Abelian varieties (v 2.00) (2008). Available online www.jmilne.org/math/CourseNotes/AV.pdf
[13] Mumford, D.: Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 2nd edn., vol. 5. Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi (2008) [with appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition] · Zbl 1177.14001
[14] Nakajima, S., Action of an automorphism of order \(p\) on cohomology groups of an algebraic curve, J. Pure Appl. Algebra, 42, 1, 85-94 (1986) · Zbl 0607.14022 · doi:10.1016/0022-4049(86)90062-9
[15] Pop, F., The Oort conjecture on lifting covers of curves, Ann. Math. (2), 180, 1, 285-322 (2014) · Zbl 1311.12003 · doi:10.4007/annals.2014.180.1.6
[16] Pries, R.; Zhu, HJ, The \(p\)-rank stratification of Artin-Schreier curves, Ann. Inst. Fourier (Grenoble), 62, 2, 707-726 (2012) · Zbl 1281.11062 · doi:10.5802/aif.2692
[17] Rotman, JJ.: An Introduction to Homological Algebra, 2nd edn. Universitext, Springer, New York (2009). doi:10.1007/b98977 · Zbl 1157.18001
[18] Serre, J.P.: Local Fields, Graduate Texts in Mathematics, vol. 67. Springer, New York, Berlin (1979) (translated from the French by Marvin Jay Greenberg) · Zbl 0423.12016
[19] The Stacks Project Authors. Stacks Project (2021). http://stacks.math.columbia.edu
[20] Subrao, D., The \(p\)-rank of Artin-Schreier curves, Manuscr. Math., 16, 2, 169-193 (1975) · Zbl 0321.14017 · doi:10.1007/BF01181639
[21] Szamuely, T.: Galois groups and fundamental groups. Cambridge Studies in Advanced Mathematics, vol 117. Cambridge University Press, Cambridge (2009). doi:10.1017/CBO9780511627064 · Zbl 1189.14002
[22] Towse, C., Weierstrass points on cyclic covers of the projective line, Trans. Am. Math. Soc., 348, 8, 3355-3378 (1996) · Zbl 0877.14025 · doi:10.1090/S0002-9947-96-01649-2
[23] Wedhorn, T.: De Rham cohomology of varieties over fields of positive characteristic. In: Higher-dimensional geometry over finite fields. In: NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 16, pp. 269-314. IOS, Amsterdam (2008) · Zbl 1182.14011
[24] Weibel, C.A.: An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol 38. Cambridge University Press, Cambridge (1994). doi:10.1017/CBO9781139644136 · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.