×

Stabilization and destabilization of hybrid systems by periodic stochastic controls. (English) Zbl 1478.93716

Summary: This paper aims to determine whether or not a periodic stochastic feedback control can stabilize or destabilize a given nonlinear hybrid system. New methods are developed and sufficient conditions on the stability and instability for hybrid nonlinear systems with periodic stochastic perturbations are provided. These results are then used to examine stabilization and destabilization by periodic stochastic feedback controls, including intermittent stochastic controls.

MSC:

93E15 Stochastic stability in control theory
93D15 Stabilization of systems by feedback
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C10 Nonlinear systems in control theory

References:

[1] Khasminskii, R. Z., Stochastic Stability of Differential Equations (1981), Sijthoff and Noordhoff · Zbl 1259.60058
[2] Arnold, L.; Crauel, H.; Wihstutz, V., Stabilisation of linear systems by noise, SIAM J. Control Optim., 21, 451-461 (1983) · Zbl 0514.93069
[3] Scheutzow, M., Stabilisation and destabilisation by noise in the plane, Stoch. Anal. Appl., 11, 1, 97-113 (1993) · Zbl 0766.60072
[4] Mao, X., Stochastic stabilisation and destabilisation, Systems Control Lett., 23, 279-290 (1994) · Zbl 0820.93071
[5] Appleby, J. A.D.; Mao, X., Stochastic stabilisation of functional differential equations, Syst. Control Lett., 54, 11, 1069-1081 (2005) · Zbl 1129.34330
[6] Appleby, J. A.D.; Mao, X.; Rodkina, A., On stochastic stabilization of difference equations, Discrete Contin. Dyn. Syst. A, 15, 3, 843-857 (2006) · Zbl 1115.39008
[7] Caraballo, T.; Garrido-Atienza, M.; Real, J., Stochastic stabilization of differential systems with general decay rate, Systems Control Lett., 48, 397-406 (2003) · Zbl 1157.93537
[8] Caraballo, T.; Robinson, J. C., Stabilisation of linear PDEs by Strotonovich noise, Systems Control Lett., 53, 41-50 (2004) · Zbl 1157.60332
[9] Athans, M., Command and control (C2) theory: A challenge to control science, IEEE Trans. Automat. Control, 32, 286-293 (1987)
[10] Ghosh, M. K.; Arapostathis, A.; Marcus, S. I., Optimal control of switching diffusions with application to flexible manufacturing systems, SIAM J. Control Optim., 35, 1183-1204 (1993) · Zbl 0785.93092
[11] Ghosh, M. K.; Arapostathis, A.; Marcus, S. I., Ergodic control of switching diffusions, SIAM J. Control Optim., 35, 1952-1988 (1997) · Zbl 0891.93081
[12] Sethi, S. P.; Zhang, Q., Hierarchical Decision Making in Stochastic Manufacturing Systems (1994), Birkhäuser: Birkhäuser Boston · Zbl 0923.90002
[13] Sworder, D. D.; Rogers, R. O., An LQ-solution to a control problem associated with solar thermal central receiver, IEEE Trans. Automat. Control, 28, 971-978 (1983)
[14] Yin, G.; Zhang, Q., Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0896.60039
[15] Yin, G.; Liu, R. H.; Zhang, Q., Recursive algorithms for stock liquidation: A stochastic optimization approach, SIAM J. Optim., 13, 240-263 (2002) · Zbl 1021.91022
[16] Basak, G. K.; Bisi, A.; Ghosh, M. K., Stability of a random diffusion with linear drift, J. Math. Anal. Appl., 202, 604-622 (1996) · Zbl 0856.93102
[17] Costa, O. L.V.; Assumpcao, E. O.; Boukas, E. K., Constrained quadratic state feedback control of discrete-time Markovian jump linear systems, Automatica, 35, 4, 617-626 (1999) · Zbl 0933.93079
[18] Ji, Y.; Chizeck, H. J., Controllability, stabilizability and continuous-time Markovian jump linear quadratic control, IEEE Trans. Automat. Control, 35, 777-788 (1990) · Zbl 0714.93060
[19] Mao, X., Stability of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 79, 45-67 (1999) · Zbl 0962.60043
[20] Mao, X.; Matasov, A.; Piunovskiy, A. B., Stochastic differential delay equations with Markovian switching, Bernoulli, 6, 1, 73-90 (2000) · Zbl 0956.60060
[21] Mariton, M., Jump Linear Systems in Automatic Control (1990), Marcel Dekker
[22] Shaikhet, L., Stability of stochastic hereditary systems with Markov switching, Theory Stoch. Process., 2, 18, 180-184 (1996) · Zbl 0939.60049
[23] Yang, Z.; Zhu, E.; Xu, Y.; Tan, Y., Razumikhin-type theorems on exponential stability of stochastic functional fifferential equations with infinite delay, Acta Appl. Math., 111, 2, 219-231 (2010) · Zbl 1198.34182
[24] Zhu, E.; Tian, X.; Wang, Y., On \(p\) th moment exponential stability of stochastic differential equations with Markovian switching and time-varying delay, J. Inequal. Appl., 137, 1-11 (2015) · Zbl 1383.60049
[25] Deng, F.; Luo, Q.; Mao, X., Stochastic stabilization of hybrid differential equations, Automatica, 48, 2321-2328 (2012) · Zbl 1257.93103
[26] Luo, S.; F., Deng.; B., Zhang.; Hu, S., Almost sure stability of hybrid stochastic systems under asynchronous Markovian switching, Systems Control Lett., 133, Article 104556 pp. (2019) · Zbl 1427.93267
[27] Mao, X.; Yin, G.; Yuan, C., Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43, 264-273 (2007) · Zbl 1111.93082
[28] Mao, X.; Yuan, C., Stochastic Differential Equations with Markovian Switching (2006), Imperial College Press · Zbl 1126.60002
[29] Mao, X., Stability of Stochastic Differential Equations with Respect To Semimartingales (1991), Longman Scientific and Technical · Zbl 0724.60059
[30] Mao, X., Exponential Stability of Stochastic Differential Equations (1994), Marcel Dekker · Zbl 0806.60044
[31] Mao, X., Stochastic Differential Equations and their Applications (2007), Elsevier · Zbl 1138.60005
[32] Anderson, W. J., Continuous-Time Markov Chains (1991), Springer: Springer New York · Zbl 0731.60067
[33] Liptser, R., A strong law of large numbers for local martingales, Stochastics, 3, 217-228 (1980) · Zbl 0435.60037
[34] Zhang, B.; Deng, F.; Peng, S.; Xie, S., Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355, 3829-3852 (2018) · Zbl 1390.93852
[35] Li, X.; Mao, X.; Yin, G., Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in \(p\) th moment, and stability, IMA J. Numer. Anal., 39, 2, 847-892 (2019) · Zbl 1461.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.