×

Reliable \(\mathcal{H}_\infty\) filtering for the SP resonant ICPT system with stochastic multiple sensor faults. (English) Zbl 1478.93702

Summary: The inductively coupled power transfer (ICPT) system is one of the most important system in the wireless power transfer field. In this paper, the reliable \(\mathcal{H}_\infty\) filtering problem is considered for the ICPT system based on the series-parallel (SP) resonant compensation network. A more general SP resonant ICPT system model is proposed with considering external disturbances and multiple sensor faults. The sensor faults are assumed to happen in a random way, which are described by a set of stochastic variables satisfying certain statistical features. The main purpose of the addressed problem is to design an \(\mathcal{H}_\infty\) filtering scheme such that the filtering error dynamics are asymptotically mean-square stability (AMSS). For this purpose, a generalized state-space averaging (GSSA) model is built to characterize dynamical behaviors of the SP resonant ICPT system first. Then the filtering-error system with stochastic sensor faults is established via the GSSA model. By virtue of an extended Lyapunov function, a sufficient condition is given to achieve the AMSS of the system and \(\mathcal{H}_\infty\) performance requirement. Subsequently, the \(\mathcal{H}_\infty\) filtering gains are obtained by solving a set of linear matrix inequalities. Finally, a simulation example is provided to verify the availability and reliability of the proposed filtering scheme.

MSC:

93E11 Filtering in stochastic control theory
93E15 Stochastic stability in control theory
93D20 Asymptotic stability in control theory
93B36 \(H^\infty\)-control
Full Text: DOI

References:

[1] M.P. Kazmierkowski, A.J. Moradewicz, Contactless energy transfer (CET) systems-A review, in: 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), 2012, pp. Session 3-1-Session 3-6, http://dx.doi.org/10.1109/EPEPEMC.2012.6397378.
[2] Bi, Z.; Kan, T.; Mi, C. C.; Zhang, Y.; Zhao, Z.; Keoleian, G. A., A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility, Appl. Energy, 179, 413-425 (2016)
[3] Patil, D.; McDonough, M. K.; Miller, J. M.; Fahimi, B.; Balsara, P. T., Wireless power transfer for vehicular applications: Overview and challenges, IEEE Trans. Transp. Electr., 4, 1, 3-37 (2018)
[4] Jiang, H.; Zhang, J.; Lan, D.; Chao, K. K.; Liou, S.; Shahnasser, H.; Fechter, R.; Hirose, S.; Harrison, M.; Roy, S., A low-frequency versatile wireless power transfer technology for biomedical implants, IEEE Trans. Biomed. Circuits Syst., 7, 4, 526-535 (2013)
[5] M. Fareq, M. Fitra, M. Irwanto, H.S. Syafruddin, N. Gomesh, S. Farrah, M. Rozailan, Solar wireless power transfer using inductive coupling for mobile phone charger, in: 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), 2014, pp. 473-476, http://dx.doi.org/10.1109/PEOCO.2014.6814475.
[6] T.M. Hayslett, T. Orekan, P. Zhang, Underwater wireless power transfer for ocean system applications, in: Oceans 2016 MTS/IEEE Monterey, 2016, pp. 1-6, http://dx.doi.org/10.1109/Oceans.2016.7761481.
[7] Aziz, A. F.A.; Romlie, M. F.; Baharudin, Z., Review of inductively coupled power transfer for electric vehicle charging, IET Power Electron., 12, 14, 3611-3623 (2019)
[8] J.L. Villa, A. Llombart, J.F. Sanz, J. Sallan, Practical development of a 5kW ICPT system SS compensated with a large air gap, in: 2007 IEEE International Symposium on Industrial Electronics, 2007, pp. 1219-1223, http://dx.doi.org/10.1109/ISIE.2007.4374772.
[9] Y. Sun, A.P. Hu, X. Dai, Y. Su, Discrete time mapping modeling and bifurcation phenomenon study of a ZVS converter, in: 2004 International Conference on Power System Technology, vol. 2, pp. 1015-1018, http://dx.doi.org/10.1109/ICPST.2004.1460150.
[10] Z. Yu, X. Dai, Y. Sun, Z. Liao, Z. Ye, Robust stochastic stability of ICPT system under small Gauss random excitation, in: 2018 Chinese Automation Congress (CAC), 2018, pp. 940-945, http://dx.doi.org/10.1109/CAC.2018.8623280.
[11] A.P. Hu, Modeling a contactless power supply using GSSA method, in: 2009 IEEE International Conference on Industrial Technology, 2009, pp. 1-6, http://dx.doi.org/10.1109/ICIT.2009.4939571.
[12] X. Dai, C. Tang, Y. Sun, Z. Wang, A.P. Hu, Investigating an \(H_\infty\) control method considering frequency uncertainty for CLC type inductively coupled power transfer system, in: 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 2022-2027, http://dx.doi.org/10.1109/ECCE.2011.6064035.
[13] Li, Y.; Sun, Y.; Dai, X., \( \mu \)-Synthesis for frequency uncertainty of the ICPT system, IEEE Trans. Ind. Electron., 60, 1, 291-300 (2013)
[14] Xia, C.; Wang, W.; Ren, S.; Wu, X.; Sun, Y., Robust control for inductively coupled power transfer systems with coil misalignment, IEEE Trans. Power Electron., 33, 9, 8110-8122 (2018)
[15] Li, Y.; Du, H.; He, Z.; Zhou, W., Robust control for the IPT system with parametric uncertainty using LMI pole constraints, IEEE Trans. Power Electron., 35, 1, 1022-1035 (2020)
[16] Chen, H.; Jiang, B., A review of fault detection and diagnosis for the traction system in high-speed trains, IEEE Trans. Intell. Transp. Syst., 21, 2, 450-465 (2020)
[17] X. Dai, C. Tao, C. Tang, A.P. Hu, A. Abdolkhani, Study on robust controller design for inductively coupled power transfer system, in: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, 2011, pp. 1614-1619, http://dx.doi.org/10.1109/IECON.2011.6119548.
[18] Li, Y.; Sun, Y.; Dai, X., Robust control for an uncertain LCL resonant ICPT system using LMI method, Control Eng. Pract., 21, 1, 31-41 (2013)
[19] Xia, C.; Wang, W.; Chen, G.; Wu, X.; Zhou, S.; Sun, Y., Robust control for the relay ICPT system under external disturbance and parametric uncertainty, IEEE Trans. Control Syst. Technol., 25, 6, 2168-2175 (2017)
[20] Yu, Y.; Sun, Y.; Dai, X.; Ye, Z., Stability and control of uncertain ICPT system considering time-varying delay and stochastic disturbance, Internat. J. Robust Nonlinear Control, 29, 18, 6582-6604 (2019) · Zbl 1447.93275
[21] Li, Y.; Du, H.; Yang, M.; He, Z., Two-degree-of-freedom \(H_\infty\) robust control optimization for the IPT system with parameter perturbations, IEEE Trans. Power Electron., 33, 12, 10954-10969 (2018)
[22] V.K. Sharma, M. Kumar, Optimization of design parameters for 45W ICPT system, in: 2013 Students Conference on Engineering and Systems (SCES), 2013, pp. 1-6, http://dx.doi.org/10.1109/SCES.2013.6547553.
[23] Zaheer, A.; Hao, H.; Covic, G. A.; Kacprzak, D., Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging, IEEE Trans. Power Electron., 30, 4, 1937-1955 (2015)
[24] Chen, Y.; Yang, B.; Kou, Z.; He, Z.; Cao, G.; Mai, R., Hybrid and reconfigurable IPT systems with high-misalignment tolerance for constant-current and constant-voltage battery charging, IEEE Trans. Power Electron., 33, 10, 8259-8269 (2018)
[25] Xia, C.; Li, X.; Sun, Q.; Liao, Z.; Hu, A. P., Improving magnetic coupling characteristics of square coupler ICPT system by round corner design, Electr. Eng., 102, 2, 1021-1033 (2020)
[26] Tian, E.; Peng, C., Memory-based event-triggering \(H_\infty\) load frequency control for power systems under deception attacks, IEEE Trans. Cybern., 50, 4610-4618 (2020)
[27] Jia, S.; Chen, C.; Liu, P.; Duan, S., A digital phase synchronization method for bidirectional inductive power transfer, IEEE Trans. Ind. Electron., 67, 8, 6450-6460 (2020)
[28] Esteban, B.; Sid-Ahmed, M.; Kar, N. C., A comparative study of power supply architectures in wireless EV charging systems, IEEE Trans. Power Electron., 30, 11, 6408-6422 (2015)
[29] Wang, C. S.; Covic, G. A.; Stielau, O. H., Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems, IEEE Trans. Ind. Electron., 51, 1, 148-157 (2004)
[30] Johnson, S. C.; Chakrabarty, A.; Hu, J.; Zak, S. H.; DeCarlo, R. A., Dual-mode robust fault estimation for switched linear systems with state jumps, Nonlinear Anal. Hybrid Syst., 27, 125-140 (2018) · Zbl 1378.93030
[31] Shi, Y.; Tian, E.; Shen, S.; Zhao, X., Adaptive memory-event-triggered H infinity control for network-based T-S fuzzy systems with asynchronous premise constraints, IET Control Theory Appl., 15, 4, 534-544 (2021)
[32] Li, J.; Pan, K.; Zhang, D.; Su, Q., Robust fault detection and estimation observer design for switched systems, Nonlinear Anal. Hybrid Syst., 34, 30-42 (2019) · Zbl 1434.93015
[33] Chen, H.; Jiang, B.; Ding, S. X.; Huang, B., Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives, IEEE Trans. Intell. Transp. Syst., 1-17 (2020)
[34] Tian, Y.; Yan, H.; Zhang, H.; Zhan, X.; Peng, Y., Resilient static output feedback control of linear semi-markov jump systems with incomplete semi-markov kernel, IEEE Trans. Automat. Control, 1 (2020)
[35] Wang, B.; Cheng, J.; Zhan, J., A sojourn probability approach to fuzzy-model-based reliable control for switched systems with mode-dependent time-varying delays, Nonlinear Anal. Hybrid Syst., 26, 239-253 (2017) · Zbl 1373.93195
[36] Tian, E.; Wang, Z.; Zou, L.; Yue, D., Chance-constrained \(H_\infty\) control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica, 107, 296-305 (2019) · Zbl 1429.93090
[37] Zhang, H.; Wang, Z.; Yan, H.; Yang, F.; Zhou, X., Adaptive event-triggered transmission scheme and \(H_\infty\) filtering co-design over a filtering network with switching topology, IEEE Trans. Cybern., 49, 12, 4296-4307 (2019)
[38] Lin, C.; Wang, Q.; Lee, T. H.; Chen, B., H-infinity filter design for nonlinear systems with time-delay through T-S fuzzy model approach, IEEE Trans. Fuzzy Syst., 16, 3, 739-746 (2008)
[39] Wang, L.; Wang, Z.; Wei, G.; Alsaadi, F., Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol, IEEE Trans. Neural Netw. Learn. Syst., 29, 4, 1046-1057 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.