×

Recursive maximum likelihood estimation with \(t\)-distribution noise model. (English) Zbl 1478.93684

Summary: In this paper, a recursive \(t\)-distribution noise model based maximum likelihood estimation algorithm for discrete-time dynamic state estimation is proposed. The proposed estimator is robust to outliers because the “thick tail” of the \(t\)-distribution reduces the effect of large errors in the likelihood function. A computationally efficient recursive algorithm is derived using the influence function. As the \(t\)-distribution reduces to the Gaussian distribution when its degree of freedom tends to infinity, the proposed estimator reduces to the Kalman filter. The mean squared error is used to evaluate the performance of the proposed estimator. Compared with the Kalman filter, the proposed estimator is more robust to outliers in the process and measurement noise. Simulations show that for the particle filter to give a better mean squared error, its computational time is two orders of magnitude slower than the proposed estimator.

MSC:

93E10 Estimation and detection in stochastic control theory
93C55 Discrete-time control/observation systems

Software:

robustbase
Full Text: DOI

References:

[1] Abur, A.; Gómez-Expósito, A., Power System State Estimation: Theory and Implementation (2004), CRC press
[2] Aravkin, A.; Burke, J. V.; Ljung, L.; Lozano, A.; Pillonetto, G., Generalized Kalman smoothing: Modeling and algorithms, Automatica, 86, 63-86 (2017) · Zbl 1375.93144
[3] Aravkin, A. Y.; Burke, J. V.; Pillonetto, G., Robust and trend-following Student’s t Kalman smoothers, SIAM Journal on Control and Optimization, 52, 5, 2891-2916 (2014) · Zbl 1338.60113
[4] Arulampalam, M. S.; Maskell, S.; Gordon, N.; Clapp, T., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, 50, 2, 174-188 (2002)
[5] Beilina, L.; Karchevskii, E.; Karchevskii, M., Numerical Linear Algebra: Theory and Applications (2017), Springer · Zbl 1396.65001
[6] Chen, T.; Sun, L.; Ling, K. V.; Ho, W. K., Robust power system state estimation using t-distribution noise model, IEEE Systems Journal, 14, 1, 771-781 (2019)
[7] Fahrmeir, L.; Künstler, R., Penalized likelihood smoothing in robust state space models, Metrika, 49, 3, 173-191 (1999) · Zbl 1093.62572
[8] Grigelionis, B., Student’s \(t\)-Distribution and Related Stochastic Processes (2013), Springer · Zbl 1269.60013
[9] Hampel, F. R.; Ronchetti, E. M.; Rousseeuw, P. J.; Stahel, W. A., Robust Statistics: the Approach Based on Influence Functions, (Vol. 114) (2011), John Wiley & Sons
[10] Ho, W. K.; Chen, T.; Ling, K. V.; Sun, L., Variance analysis of robust state estimation in power system using influence function, International Journal of Electrical Power & Energy Systems, 92, 53-62 (2017)
[11] Ho, W. K.; Ling, K. V.; Vu, H. D.; Wang, X., Filtering of the ARMAX process with generalized t-distribution noise: The influence function approach, Industrial & Engineering Chemistry Research, 53, 17, 7019-7028 (2014)
[12] Ho, W. K.; Vu, H. D.; Ling, K. V., Influence function analysis of parameter estimation with generalized t distribution noise model, Industrial & Engineering Chemistry Research, 52, 11, 4168-4177 (2013)
[13] Huber, P. J., Robust Statistics (1981), John Wiley & Sons · Zbl 0536.62025
[14] Huber, P. J., Robust estimation of a location parameter, (Breakthroughs in Statistics (1992), Springer), 492-518
[15] Kotz, S.; Nadarajah, S., Multivariate t-Distributions and Their Applications (2004), Cambridge University Press · Zbl 1100.62059
[16] Lewis, F. L.; Xie, L.; Popa, D., Optimal and Robust Estimation: with an Introduction to Stochastic Control Theory, (Vol. 29) (2007), CRC press
[17] Ling, K. V.; Lim, K. W., Receding horizon recursive state estimation, IEEE Transactions on Automatic Control, 44, 9, 1750-1753 (1999) · Zbl 0958.93014
[18] Maronna, R.; Martin, D.; Yohai, V., Robust Statistics: Theory and Methods (2006), John Wiley & Sons, Chichester. ISBN · Zbl 1094.62040
[19] Meliopoulos, A. P.S., Power System Modeling Analysis and Control (2004), Marcel Dekker Inc
[20] Monticelli, A., State Estimation in Electric Power Systems: A Generalized Approach, (Vol. 507) (1999), Springer Science & Business Media
[21] Shivakumar, N.; Jain, A., A review of power system dynamic state estimation techniques, (Power System Technol. and IEEE Power India Conf., 2008. POWERCON 2008. Joint Int. Conf. on (2008), IEEE), 1-6
[22] Sun, L.; Chen, T.; Ho, W. K.; Ling, K. V.; Maciejowski, J. M., Covariance analysis of LAV robust dynamic state estimation in power systems, IEEE Systems Journal, 14, 2, 2801-2812 (2019)
[23] Tylavsky, D. J.; Sohie, G. R., Generalization of the matrix inversion lemma, Proceedings of the IEEE, 74, 7, 1050-1052 (1986)
[24] Wang, D.; Romagnoli, J., A framework for robust data reconciliation based on a generalized objective function, Industrial & Engineering Chemistry Research, 42, 13, 3075-3084 (2003)
[25] Wang, D.; Romagnoli, J., Generalized \(t\)-distribution and its applications to process data reconciliation and process monitoring, Transactions of the Institute of Measurement and Control, 27, 5, 367-390 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.