×

Barrier Lyapunov function-based adaptive fuzzy attitude tracking control for rigid satellite with input delay and output constraint. (English) Zbl 1478.93589

Summary: This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques.

MSC:

93D30 Lyapunov and storage functions
93C40 Adaptive control/observation systems
93C42 Fuzzy control/observation systems
93C43 Delay control/observation systems
70M20 Orbital mechanics

References:

[1] Sun, L.; Zheng, Z., Disturbance observer-based robust saturated control for spacecraft proximity maneuvers, IEEE Trans. Control Syst. Technol., 26, 2, 684-692 (2018)
[2] Gui, H.; Ruiter, A. H.J.d., Adaptive fault-tolerant spacecraft pose tracking with control allocation, IEEE Trans. Control Syst. Technol., 27, 2, 479-494 (2019)
[3] Wang, F.; Miao, Y.; Li, C.; Hwang, I., Attitude control of rigid spacecraft with predefined-time stability, J. Franklin Inst., 357, 7, 4212-4221 (2020) · Zbl 1437.93097
[4] Zhang, X.; Zong, Q.; Dou, L.; Tian, B.; Liu, W., Finite-time attitude maneuvering and vibration suppression of flexible spacecraft, J. Franklin Inst., 357, 16, 11604-11628 (2020) · Zbl 1450.93070
[5] Qian, M.; Shi, Y.; Gao, Z.; Zhang, X., Integrated fault tolerant tracking control for rigid spacecraft using fractional order sliding mode technique, J. Franklin Inst., 357, 15, 10557-10583 (2020) · Zbl 1450.93007
[6] Zhang, J.; Wang, Z.; Zhao, X.; Wang, Y.; Xu, N., Prescribed-time observers of LPV systems: a linear matrix inequality approach, Appl. Math. Comput., 398, 125982 (2021) · Zbl 1508.93131
[7] Sui, W.; Duan, G.; Hou, M.; Zhang, M., Distributed fixed-time attitude coordinated tracking for multiple rigid spacecraft via a novel integral sliding mode approach, J. Franklin Inst., 357, 14, 9399-9422 (2020) · Zbl 1448.93046
[8] Zhang, J.; Zhu, F.; Karimi, H. R.; Wang, F., Observer-based sliding mode control for T-S fuzzy descriptor systems with time delay, IEEE Trans. Fuzzy Syst., 27, 10, 2009-2023 (2019)
[9] Y. Jinpeng, S. Peng, C. Xinkai, C. Guozeng, Finite-time command filtered adaptive control for nonlinear systems via immersion and invariance, Sci. China Inf. Sci.(1674-733X).
[10] 1-1
[11] Gao, C.; Liu, X.; Yang, Y.; Liu, X.; Li, P., Event-triggered finite-time adaptive neural control for nonlinear non-strict-feedback time-delay systems with disturbances, Inf. Sci., 536, 1-24 (2020) · Zbl 1478.93394
[12] Cui, G.; Yang, W.; Yu, J., Neural network-based finite-time adaptive tracking control of nonstrict-feedback nonlinear systems with actuator failures, Inf. Sci., 545, 298-311 (2021) · Zbl 1478.93312
[13] Liu, C.; Liu, X.; Wang, H.; Zhou, Y.; Lu, S., Finite-time adaptive tracking control for unknown nonlinear systems with a novel barrier Lyapunov function, Inf. Sci., 528, 231-245 (2020) · Zbl 1461.93454
[14] Liu, Y.; Zhu, Q.; Zhao, N.; Wang, L., Fuzzy approximation-based adaptive finite-time control for nonstrict feedback nonlinear systems with state constraints, Inf. Sci., 548, 101-117 (2021) · Zbl 1478.93350
[15] Lu, K.; Xia, Y., Adaptive attitude tracking control for rigid spacecraft with finite-time convergence, Automatica, 49, 12, 3591-3599 (2013) · Zbl 1315.93045
[16] Min, H.; Xu, S.; Yu, X.; Fei, S.; Cui, G., Adaptive tracking control for stochastic nonlinear systems with full-state constraints and unknown covariance noise, Appl. Math. Comput., 385, 125397 (2020) · Zbl 1508.93336
[17] He, M.; Rong, T.; Li, J.; He, C., Adaptive dynamic surface full state constraints control for stochastic Markov jump systems based on event-triggered strategy, Appl. Math. Comput., 392, 125563 (2021) · Zbl 1508.93282
[18] Lin, Y.; Zhuang, G.; Sun, W.; Zhao, J.; Chu, Y., Resilient \(h \infty\) dynamic output feedback controller design for USJSs with time-varying delays, Appl. Math. Comput., 395, 125875 (2021) · Zbl 1508.93239
[19] Li, H.; Wang, L.; Du, H.; Boulkroune, A., Adaptive fuzzy backstepping tracking control for strict-feedback systems with input delay, IEEE Trans. Fuzzy Syst., 25, 3, 642-652 (2017)
[20] Li, D.; Liu, Y.; Tong, S.; Chen, C. L.P.; Li, D., Neural networks-based adaptive control for nonlinear state constrained systems with input delay, IEEE Trans. Cybern., 49, 4, 1249-1258 (2019)
[21] Hu, Q.; Shao, X.; Guo, L., Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance, IEEE/ASME Trans. Mechatron., 23, 1, 331-341 (2018)
[22] Shao, X.; Hu, Q.; Shi, Y.; Jiang, B., Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation, IEEE Trans. Control Syst. Technol., 28, 2, 574-582 (2020)
[23] Zou, M.; Yu, J.; Ma, Y.; Zhao, L.; Lin, C., Command filtering-based adaptive fuzzy control for permanent magnet synchronous motors with full-state constraints, Inf. Sci., 518, 1-12 (2020) · Zbl 1461.93274
[24] Yu, J.; Zhao, L.; Yu, H.; Lin, C., Barrier Lyapunov functions-based command filtered output feedback control for full-state constrained nonlinear systems, Automatica, 105, 71-79 (2019) · Zbl 1429.93395
[25] Wang, H.; Chen, B.; Liu, X.; Liu, K.; Lin, C., Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation, Inf. Sci., 269, 300-315 (2014) · Zbl 1339.93104
[26] Li, Q.; Yuan, J.; Zhang, B., Extended state observer based output control for spacecraft rendezvous and docking with actuator saturation, ISA Trans., 88, 37-49 (2019)
[27] Zheng, Z.; Huang, Y.; Xie, L.; Zhu, B., Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output, IEEE Trans. Control Syst. Technol., 26, 5, 1851-1859 (2018)
[28] Li, Y.; Tong, S.; Li, T., Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation, IEEE Trans. Cybern., 45, 10, 2299-2308 (2015)
[29] Wang, X.; Saberi, A.; Stoorvogel, A. A., Stabilization of linear system with input saturation and unknown constant delays, Automatica, 49, 12, 3632-3640 (2013) · Zbl 1315.93070
[30] Zhou, B.; Gao, H.; Lin, Z.; Duan, G.-R., Stabilization of linear systems with distributed input delay and input saturation, Automatica, 48, 5, 712-724 (2012) · Zbl 1348.93224
[31] Huo, B.; Xia, Y.; Yin, L.; Fu, M., Fuzzy adaptive fault-tolerant output feedback attitude-tracking control of rigid spacecraft, IEEE Trans. Syst. Man Cybern., 47, 8, 1898-1908 (2017)
[32] Shi, S.; Fei, Z.; Shi, P.; Ahn, C. K., Asynchronous filtering for discrete-time switched T-S fuzzy systems, IEEE Trans. Fuzzy Syst., 28, 8, 1531-1541 (2020)
[33] 1-1
[34] Liu, Z.; Karimi, H. R.; Yu, J., Passivity-based robust sliding mode synthesis for uncertain delayed stochastic systems via state observer, Automatica, 111, 108596 (2020) · Zbl 1430.93030
[35] Khanesar, M. A.; Kaynak, O.; Yin, S.; Gao, H., Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay, IEEE Trans. Fuzzy Syst., 23, 1, 205-214 (2015)
[36] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, Int. J. Control, 76, 9-10, 924-941 (2003) · Zbl 1049.93014
[37] Cui, B.; Xia, Y.; Liu, K.; Shen, G., Finite-time tracking control for a class of uncertain strict-feedback nonlinear systems with state constraints: a smooth control approach, IEEE Trans. Neural Netw. Learn. Syst., 31, 11, 4920-4932 (2020)
[38] Li, Y.-X., Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems, Automatica, 106, 117-123 (2019) · Zbl 1429.93181
[39] Wang, F.; Chen, B.; Lin, C.; Zhang, J.; Meng, X., Adaptive neural network finite-time output feedback control of quantized nonlinear systems, IEEE Trans. Cybern., 48, 6, 1839-1848 (2018)
[40] Yu, J.; Zhao, L.; Yu, H.; Lin, C.; Dong, W., Fuzzy finite-time command filtered control of nonlinear systems with input saturation, IEEE Trans. Cybern., 48, 8, 2378-2387 (2018)
[41] Chen, Q.; Shi, L.; Na, J.; Ren, X.; Nan, Y., Adaptive echo state network control for a class of pure-feedback systems with input and output constraints, Neurocomputing, 275, 1370-1382 (2018)
[42] Yu, J.; Shi, P.; Liu, J.; Lin, C., Neuroadaptive finite-time control for nonlinear mimo systems with input constraint, IEEE Trans. Cybern., PP (2020)
[43] Liu, Z.; Yu, J., Non-fragile observer-based adaptive control of uncertain nonlinear stochastic Markovian jump systems via sliding mode technique, Nonlinear Anal.-Hybrid Syst., 38, 100931 (2020) · Zbl 1480.93076
[44] Hu, Q.; Li, B.; Huo, X.; Shi, Z., Spacecraft attitude tracking control under actuator magnitude deviation and misalignment, Aerosp. Sci. Technol., 28, 1, 266-280 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.