×

Boundary Mittag-Leffler stabilization of coupled time fractional order reaction-advection-diffusion systems with non-constant coefficients. (English) Zbl 1478.93499

Summary: This paper is concerned with boundary control for a class of coupled time fractional order reaction-advection-diffusion (FRAD) systems with non-constant coefficients (space-dependent coefficients) by state feedback. Partial differential equation (PDE) backstepping makes available to stabilize coupled time FRAD systems modeled by fractional PDEs. With boundary controller design and discussion on well-posedness of control kernel equations, the Mittag-Leffler stability of the closed-loop system is analyzed theoretically by the fractional Lyapunov method. A numerical scheme is constructed for coupled FRAD system to simulate numerical examples when the kernel equations have not the explicit solution. Comments on robustness to perturbation parameters in system coefficients are finally stated.

MSC:

93D15 Stabilization of systems by feedback
93C20 Control/observation systems governed by partial differential equations
35K57 Reaction-diffusion equations
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Balogh, A.; Krstic, M., Stability of partial difference equations governing control gains in infinite-dimensional backstepping, Systems Control Lett., 51, 2, 151-164 (2004) · Zbl 1157.93481
[2] Baccoli, A.; Pisano, A.; Orlov, Y., Boundary control of coupled reaction-diffusion processes with constant parameters, Automatica, 54, 80-90 (2015) · Zbl 1318.93072
[3] Espitia, N.; Polyakov, A.; Efimov, D.; Perruquetti, W., Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems, Automatica, 103, 398-407 (2019) · Zbl 1415.93201
[4] Zhuang, P.; Gu, Y.; Liu, F.; Turner, I.; Yarlagadda, P., Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method, Internat. J. Numer. Methods Engrg., 88, 13, 1346-1362 (2011) · Zbl 1242.76262
[5] Li, Y.; Chen, Y.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59, 5, 1810-1821 (2010) · Zbl 1189.34015
[6] Matignon, D., Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2, 963-968 (1996)
[7] Li, C.; Zhang, F., A survey on the stability of fractional differential equations, Eur. Phys. J. Spec. Top., 193, 1, 27-47 (2011)
[8] Monje, C. A.; Chen, Y.; Vinagre, B. M.; Xue, D.; Feliu-Batlle, V., Fractional-order Systems and Controls: Fundamentals and Applications (2010), Springer Science & Business Media · Zbl 1211.93002
[9] Tepljakov, A., Fractional-order Modeling and Control of Dynamic Systems (2017), Springer International Publishing · Zbl 1383.34001
[10] Krstic, M.; Smyshlyaev, A., Boundary Control of PDEs: A Course on Backstepping Designs (2008), Siam · Zbl 1149.93004
[11] Ge, F.; Chen, Y. Q.; Kou, C., Boundary feedback stabilisation for the time fractional-order anomalous diffusion system, IET Control Theory Appl., 10, 11, 1250-1257 (2016)
[12] Chen, J.; Cui, B.; Chen, Y., Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient, ISA Trans., 80, 203-211 (2018)
[13] Cherstvy, A. G.; Chechkin, A. V.; Metzler, R., Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity, Soft Matter, 10, 10, 1591-1601 (2014)
[14] Smyshlyaev, A.; Krstic, M., On control design for PDEs with space-dependent diffusivity or time-dependent reactivity, Automatica, 41, 9, 1601-1608 (2005) · Zbl 1086.93023
[15] Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer · Zbl 0917.73004
[16] Gafiychuk, V.; Datsko, B. Y., Pattern formation in a fractional reaction-diffusion system, Physica A, 365, 2, 300-306 (2006)
[17] Uchaikin, V. V.; Sibatov, R. T., Fractional theory for transport in disordered semiconductors, Commun. Nonlinear Sci. Numer. Simul., 13, 4, 715-727 (2008) · Zbl 1221.82141
[18] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[19] Zhang, Y.; Benson, D. A.; Reeves, D. M., Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour., 32, 4, 561-581 (2009)
[20] Wang, Y.-M.; Ren, L., Efficient compact finite difference methods for a class of time-fractional convection-reaction-diffusion equations with variable coefficients, Int. J. Comput. Math., 96, 2, 264-297 (2019) · Zbl 1499.65443
[21] Vazquez, R.; Krstic, M., Boundary control of coupled reaction-advection-diffusion systems with spatially-varying coefficients, IEEE Trans. Automat. Control, 62, 4, 2026-2033 (2017) · Zbl 1366.93533
[22] Cui, M., Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients, J. Comput. Phys., 280, 143-163 (2015) · Zbl 1349.65281
[23] Qiao, Y.; Zhao, J.; Feng, X., A compact integrated RBF method for time fractional convection-diffusion-reaction equations, Comput. Math. Appl., 77, 9, 2263-2278 (2019) · Zbl 1442.65297
[24] Ge, F.; Meurer, T.; Chen, Y., Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters, Systems Control Lett., 122, 86-92 (2018) · Zbl 1408.93097
[25] Hu, L.; Di Meglio, F.; Vazquez, R.; Krstic, M., Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs, IEEE Trans. Automat. Control, 61, 11, 3301-3314 (2016) · Zbl 1359.93205
[26] Hu, L.; Vazquez, R.; Di Meglio, F.; Krstic, M., Boundary exponential stabilization of 1-D inhomogeneous quasilinear hyperbolic systems, SIAM J. Control Optim., 57, 2, 963-998 (2019) · Zbl 1409.93054
[27] Adams, R. A., Sobolev Spaces (1975), Academic Press · Zbl 0314.46030
[28] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[29] Zhou, H.-C.; Guo, B.-Z., Boundary feedback stabilization for an unstable time fractional reaction diffusion equation, SIAM J. Control Optim., 56, 1, 75-101 (2018) · Zbl 1386.35464
[30] Zhou, H.-C.; Lv, C.; Guo, B.-Z.; Chen, Y., Mittag-Leffler stabilization for an unstable time-fractional anomalous diffusion equation with boundary control matched disturbance, Internat. J. Robust Nonlinear Control, 29, 13, 4384-4401 (2019) · Zbl 1426.93310
[31] Yong, Z.; Feng, J., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real World Appl., 11, 5, 4465-4475 (2010) · Zbl 1260.34017
[32] Chen, J.; Tepljakov, A.; Petlenkov, E.; Chen, Y.; Zhuang, B., Stabilization and stability robustness of coupled non-constant parameter time fractional PDEs, IEEE Access, 7, Article 163969-163980 (2019)
[33] Meurer, T.; Kugi, A., Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness, Automatica, 45, 5, 1182-1194 (2009) · Zbl 1162.93016
[34] Deutscher, J.; Kerschbaum, S., Backstepping control of coupled linear parabolic PIDEs with spatially-varying coefficients, IEEE Trans. Automat. Control, 63, 12, 4218-4233 (2018) · Zbl 1423.93155
[35] Curtain, R. F.; Zwart, H., An Introduction to Infinite-Dimensional Linear Systems Theory (1995), Springer-Verlag · Zbl 0839.93001
[36] Matignon, D., (Abry, P.; Goncalves, P.; Levy-Vehel, J., An introduction to Fractional Calculus: in Scaling, Fractals and Wavelets. An introduction to Fractional Calculus: in Scaling, Fractals and Wavelets, Digital Signal and Image Processing Series, vol. 7 (2009), ISTE-Wiley), 237-278
[37] Duarte-Mermoud, M. A.; Aguila-Camacho, N.; Gallegos, J. A.; Castro-Linares, R., Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 22, 1-3, 650-659 (2015) · Zbl 1333.34007
[38] Miller, K. S.; Samko, S. G., Completely monotonic functions, Integral Transforms Spec. Funct., 12, 4, 389-402 (2001) · Zbl 1035.26012
[39] Liu, Q.; Zhu, Q.; Lv, L., Computational optimal control for the time fractional convection-diffusion-reaction system, Cluster Comput., 20, 4, 2943-2953 (2017)
[40] Li, H.; Cao, J.; Li, C., High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III), J. Comput. Appl. Math., 299, 3, 159-175 (2016) · Zbl 1382.65251
[41] Smyshlyaev, A.; Krstic, M., Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations, IEEE Trans. Automat. Control, 49, 12, 2185-2202 (2004) · Zbl 1365.93193
[42] Ablowitz, M. J.; Kruskal, M. D.; Ladik, J., Solitary wave collisions, SIAM J. Appl. Math., 36, 3, 428-437 (1979) · Zbl 0408.65075
[43] Krstic, M., Compensating actuator and sensor dynamics governed by diffusion PDEs, Systems Control Lett., 58, 5, 372-377 (2009) · Zbl 1159.93024
[44] Jameson, A., Solution of the equation \(A X + X B = C\) by inversion of an \(M \times M\) or \(N \times N\) matrix, SIAM J. Appl. Math., 16, 5, 1020-1023 (1968) · Zbl 0169.35202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.