×

A design framework for event-triggered active fault-tolerant control systems. (English) Zbl 1478.93414

Summary: This article proposes a design framework for an event-triggered active fault-tolerant control system. The considered control system is modelled with an injected actuator fault into the plant system, and it includes: (i) two event detectors to determine when information is to be sampled or updated, (ii) a fault diagnosis observer to provide the fault and state information, and (iii) a fault-tolerant controller to compensate the fault. The proposed design framework allows for the separation of the designs of the fault diagnosis observer and the fault-tolerant controller, to mitigate the coupling effect caused by the event-triggered mechanisms and avoid the computations of a higher order system. Also, a design procedure is presented to deliver the computation of the design variables to reduce the information transfer, in both centralised and decentralised cases. Finally, a batch reactor benchmark system is adopted to demonstrate the applicability and superiority of the proposed design framework.

MSC:

93C65 Discrete event control/observation systems
93B35 Sensitivity (robustness)
93B51 Design techniques (robust design, computer-aided design, etc.)
93A14 Decentralized systems
Full Text: DOI

References:

[1] Åström, K. J., & Bernhardsson, B. M. (2002). Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In The Proceeding of 41st IEEE conference on decision and control, Las Vegas, NV, USA (pp. 2011-2016).
[2] Cassandras, C. G., The event-driven paradigm for control, communication and optimization, Journal of Control and Decision, 1, 1, 3-17 (2014) · doi:10.1080/23307706.2014.885288
[3] Chen, T.; Francis, B. A., Optimal sampled-data control systems (1995), London: Springer-Verlag, London · Zbl 0847.93040
[4] Chen, X.; Hao, F., Observer-based event-triggered control for certain and uncertain linear systems, IMA Journal of Mathematical Control and Information, 30, 527-542 (2013) · Zbl 1279.93073 · doi:10.1093/imamci/dns035
[5] Chen, W.; Shi, D.; Wang, J.; Shi, L., Event-triggered state estimation: Experimental performance assessment and comparative study, IEEE Transactions on Control Systems Technology, 25, 5, 1865-1872 (2017) · doi:10.1109/TCST.2016.2623776
[6] Davoodi, M., Meskin, N., & Khorasani, K. (2016). Event-triggered fault estimation and accommodation design for linear systems. In 2016 second international conference on event-based control, communication, and signal processing, Kradow, Poland (pp. 298-311).
[7] Davoodi, M.; Meskin, N.; Khorasani, K., Event-triggered multiobjective control and fault diagnosis: A unified framework, IEEE Transactions on Industrial Informatics, 13, 1, 298-311 (2017) · doi:10.1109/TII.2016.2541669
[8] Ding, S., Model-based Fault diagnosis techniques: Design schemes, algorithms, and tools (2013), London: Springer-Verlag, London · Zbl 1293.93003
[9] Ding, S.; Zhang, P.; Yin, S.; Ding, E., An integrated design framework of Fault-Tolerant wireless networked control systems for industrial automatic control applications, IEEE Transactions on Industrial Informatics, 9, 1, 462-471 (2013) · doi:10.1109/TII.2012.2214390
[10] Duan, K.; Zhang, W., Event-triggered fault-tolerant control for networked systems with dynamic quantiser, IET Control Theory & Applications, 10, 9, 1088-1096 (2016) · doi:10.1049/iet-cta.2015.0884
[11] Feng, J.; Li, N., Observer-based event-driven fault-tolerant control for a class of system with state-dependent uncertainties, International Journal of Control, 90, 5, 950-960 (2017) · Zbl 1366.93346 · doi:10.1080/00207179.2016.1190986
[12] Hajshirmohamadi, S.; Davoodi, M.; Meskin, N.; Sheikholeslam, F., Event-triggered fault detection and isolation for discrete-time linear systems, IET Control Theory & Applications, 10, 5, 526-533 (2016) · doi:10.1049/iet-cta.2015.0762
[13] Jiang, J.; Yu, Y., Fault-tolerant control systems: A comparative study between active and passive approaches, Annual Reviews in Control, 36, 1, 60-72 (2012) · doi:10.1016/j.arcontrol.2012.03.005
[14] Lan, J.; Patton, R., A decoupling approach to integrated fault-tolerant control for linear systems with unmatched non-differentiable faults, Automatica, 89, 290-299 (2018) · Zbl 1388.93026 · doi:10.1016/j.automatica.2017.12.011
[15] Li, H.; Chen, Z.; Wu, L.; Lam, H.-K.; Du, H., Event-triggered fault detection of nonlinear networked systems, IEEE Transactions on Cybernetics, 47, 4, 1041-1052 (2017) · doi:10.1109/TCYB.2016.2536750
[16] Li, S.; Sauter, D.; Xu, B., Fault isolation filter for networked control system with event-triggered sampling scheme, Sensors, 11, 1, 557-572 (2011) · doi:10.3390/s110100557
[17] Li, Y.; Tong, S.; Yang, Z., Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system, IEEE Transactions on Cybernetics · doi:10.1109/TCYB.2019.2894024
[18] Li, X.; Yang, G., Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures, IET Control Theory and Applications, 6, 10, 1544-1551 (2012) · doi:10.1049/iet-cta.2011.0599
[19] Liu, J.; Yue, D., Event-based fault detection for networked systems with communication delay and nonlinear perturbation, Journal of the Franklin Institute, 350, 9, 2791-2807 (2013) · Zbl 1287.93053 · doi:10.1016/j.jfranklin.2013.06.021
[20] Liu, J.; Yue, D., Event-triggering in networked systems with probabilistic sensor and actuator faults, Information Sciences, 240, 145-160 (2013) · Zbl 1320.93061 · doi:10.1016/j.ins.2013.03.042
[21] Meng, X.; Chen, T., Optimal sampling and performance comparison of periodic and event based impulse control, IEEE Transactions on Automatic Control, 57, 12, 3252-3259 (2012) · Zbl 1369.93576 · doi:10.1109/TAC.2012.2200381
[22] Meng, X.; Chen, T., Event detection and control co-design of sampled-data systems, International Journal of Control, 87, 4, 777-786 (2014) · Zbl 1291.93191 · doi:10.1080/00207179.2013.857047
[23] Nesic, D.; Teel, A. R., Input-output stability properties of networked control systems, IEEE Transactions on Automatic Control, 49, 10, 1650-1667 (2004) · Zbl 1365.93466 · doi:10.1109/TAC.2004.835360
[24] Qiu, A.; Zhang, J.; Gu, J., An uncertainty-based approach to discrete-time fault estimation observer design for nonuniformly sampled systems, International Journal of Control, Automation and Systems, 15, 4, 1651-1660 (2017) · doi:10.1007/s12555-016-0180-x
[25] Rosenbrock, H., Computer aided control system design (1974), London, New York, San Francisco: Academic Press, London, New York, San Francisco · Zbl 0328.93001
[26] Tao, G., Direct adaptive actuator failure compensation control: A tutorial, Journal of Control and Decision, 1, 1, 75-101 (2014) · doi:10.1080/23307706.2014.885292
[27] Tarbouriech, S.; Seuret, A.; Silva, J.; Sbarbaro, D., Observer-based event-triggered control co-design for linear systems, IET Control Theory & Applications, 10, 18, 2466-2473 (2016) · doi:10.1049/iet-cta.2016.0167
[28] Walsh, G.; Ye, H.; Bushnell, L., Stability analysis of networked control systems, IEEE Transactions on Control Systems Technology, 10, 3, 438-446 (2002) · doi:10.1109/87.998034
[29] Wang, Y. L.; Shi, P.; Lim, C.; Liu, Y., Event-triggered fault detection filter design for a continuous-time networked control system, IEEE Transactions on Cybernetics, 46, 12, 3414-3426 (2016) · doi:10.1109/TCYB.2015.2507177
[30] Wei, B.; Xiao, F.; Dai, M., Edge event-triggered control for multi-agent systems under directed communication topologies, International Journal of Control, 91, 4, 887-896 (2018) · doi:10.1080/00207179.2017.1295320
[31] Yang, H.; Li, B.; Jiang, B.; Cocquempot, V., Fault tolerant control of switched systems: A generalized separation principle, IEEE Transactions on Control Systems Technology, 27, 2, 553-565 (2019) · doi:10.1109/TCST.2017.2785808
[32] Zhang, J.; Feng, G., Event-driven observer-based output feedback control for linear systems, Automatica, 50, 7, 1852-1859 (2014) · Zbl 1296.93117 · doi:10.1016/j.automatica.2014.04.026
[33] Zhang, H.; Feng, G.; Yan, H.; Chen, Q., Observer-based output feedback event-triggered control for consensus of multi-agent systems, IEEE Transactions on Industrial Electronics, 61, 9, 4885-4894 (2014) · doi:10.1109/TIE.2013.2290757
[34] Zhang, X.; Han, Q.; Zhang, B., An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems, IEEE Transactions on Industrial Informatics, 13, 1, 8-16 (2017)
[35] Zhang, C.; Hu, J.; Qiu, J.; Chen, Q., Reliable output feedback control for T-S fuzzy systems with decentralized event-triggered communication and actuator failures, IEEE Transactions on Cybernetics, 47, 9, 2592-2602 (2017) · doi:10.1109/TCYB.2017.2668766
[36] Zhang, K.; Jiang, B.; Shi, P., Observer-based integrated robust fault estimation and accommodation design for discrete-time systems, International Journal of Control, 83, 6, 1167-1181 (2010) · Zbl 1222.93219 · doi:10.1080/00207171003653029
[37] Zhang, K.; Jiang, B.; Shi, P., Observer-based Fault estimation and accomodation for dynamic systems (2012), Berlin: Springer-Verlag, Berlin
[38] Zhong, Z.; Lin, C.; Shao, Z.; Xu, M., Decentralized event-triggered control for large-scale networked fuzzy systems, IEEE Transactions on Fuzzy Systems, 26, 1, 29-45 (2018) · doi:10.1109/TFUZZ.2016.2634090
[39] Zou, L.; Wang, Z.; Gao, H.; Liu, X., Event-triggered state estimation for complex networks with mixed time delays via sampled data information: The continuous-time case, IEEE Transactions on Cybernetics, 45, 12, 2804-2815 (2015) · doi:10.1109/TCYB.2014.2386781
[40] Zou, L.; Wang, Z.; Zhou, D., Event-based control and filtering of networked systems: A survey, International Journal of Automation and Computing, 14, 3, 239-253 (2017) · doi:10.1007/s11633-017-1077-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.