×

Byzantine-resilient distributed state estimation: a min-switching approach. (English) Zbl 1478.93236

Summary: This paper proposes two distributed state estimation protocols for static linear cyber-physical systems under Byzantine links/nodes caused by adversarial attacks. First, a basic version of secure distributed algorithm is proposed where the influence of the Byzantine links/nodes is countered by adopting a local min-switching decision (LMSD) rather than the existing coordinate-wise trimmed means (CWTM). Necessary and sufficient conditions on the network connectivity are provided to guarantee all the regular nodes asymptotically converge to the least square estimate of the system state in the presence of a certain number of Byzantine links/nodes and sensor noises. Further, by adopting event-triggered and minimum subset decision techniques, an improved low-complexity algorithm is proposed that allows the LMSD to be intermittently performed with average linear complexity. A main advantage over the existing CWTM-based algorithms is the use of the LMSD mechanism to significantly reduce the network connectivity requirements and do not assume any observability conditions on the local nodes.

MSC:

93B70 Networked control
93C83 Control/observation systems involving computers (process control, etc.)
93C65 Discrete event control/observation systems
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] An, L.; Yang, G.-H., Distributed secure state estimation for cyber-physical systems under sensor attacks, Automatica, 107, 526-538 (2019) · Zbl 1429.93237
[2] Aspnes, J., Quickselect (2014)
[3] Bertsekas, D.; Nedic, A.; Ozdaglar, A., Convex analysis and optimization (2003), Athena Scientific · Zbl 1140.90001
[4] Chen, Y.; Kar, S.; Moura, J. M., Resilient distributed estimation through adversary detection, IEEE Transactions on Signal Processing, 66, 9, 2455-2469 (2018) · Zbl 1415.94319
[5] Chen, Y., Kar, S., & Moura, J. M. (2018b). Attack resilient distributed estimation: a consensus+innovations approach. In Proceeding of annual american control conference(pp. 1015-1020).
[6] Chen, Y.; Kar, S.; Moura, J., Resilient distributed estimation: sensor attacks, IEEE Transactions on Automatic Control, 64, 9, 3772-3779 (2019) · Zbl 1482.93602
[7] Chen, B.; Zhang, W.-A.; Yu, L.; Hu, G.; Song, H., Distributed fusion estimation with communication bandwidth constraints, IEEE Transactions on Automatic Control, 60, 5, 1398-1403 (2015) · Zbl 1360.93665
[8] Chowdhury, N. R.; Belikov, J.; Baimel, D.; Levron, Y., Observer-based detection and identification of sensor attacks in networked CPSs, Automatica (2020) · Zbl 1448.93111
[9] Dan, Y.; Zhang, T.-Y., Summation detector for false data injection attack in cyber-physical systems, IEEE Transactions on Cybernetics, 50, 6, 2338-2345 (2019)
[10] d’Onofrio, A., Bounded noises in physics, biology, and engineering (2013), Springer: Springer New York, NY, USA · Zbl 1276.60002
[11] Doostmohammadian, M.; Meskin, N., Sensor fault detection and isolation via networked estimation: full-rank dynamical systems, IEEE Transactions on Control of Network Systems (2020)
[12] Du, D.; Li, X.; Li, W.; Chen, R.; Fei, M.; Wu, L., ADMM-based distributed state estimation of smart grid under data deception and Denial of Service attacks, IEEE Transactions on Systems, Man, Cybernetics: Systems, 49, 8, 1698-1711 (2019)
[13] Fawzi, H.; Tabuada, P.; Diggavi, S., Secure estimation and control for cyber-physical systems under adversarial attacks, IEEE Transactions on Automatic Control, 59, 6, 1454-1467 (2014) · Zbl 1360.93201
[14] Geromel, J. C.; Colaner, P., Stability and stabilization of continuous-time switched linear systems, SIAM Journal on Control and Optimization, 45, 5, 1915-1930 (2003) · Zbl 1130.34030
[15] Hendrickx, J. M.; Johansson, K. H.; Jungers, R. M.; Sandberg, H.; Sou, K. C., Efficient computations of a security index for false data attacks in power networks, IEEE Transactions on Automatic Control, 59, 12, 3194-3208 (2014) · Zbl 1360.68430
[16] Kekatos, V.; Giannakis, G. B., Distributed robust power system state estimation, IEEE Transactions on Power Systems, 28, 2, 1617-1626 (2013)
[17] Khan, U. A.; Moura, J. M.F., Distributing the Kalman filter for large-scale systems, IEEE Transactions on Signal Processing, 56, 10, 4919-4935 (2008) · Zbl 1390.94242
[18] Kwon, C.; Hwang, I., Cyber attack mitigation for cyber-physical systems: hybrid system approach to controller design, IET Control Theory & Applications, 10, 7, 731-741 (2016)
[19] LeBlanc, H. J.; Zhang, H.; Koutsoukos, X.; Sundaram, S., Resilient asymptotic consensus in robust networks, IEEE Journal on Selected Areas in Communications, 31, 4, 766-780 (2013)
[20] Lee, J. G.; Kim, J.; Shim, H., Fully distributed resilient state estimation based on distributed median solver, IEEE Transactions on Automatic Control, 65, 9, 3935-3942 (2020) · Zbl 1533.93769
[21] Lee, C.; Shim, H.; Eun, Y., On redundant observability: from security index to attack detection and resilient state estimation, IEEE Transactions on Automatic Control, 64, 2, 775-782 (2019) · Zbl 1482.93351
[22] Liu, Y.; Li, C., Secure distributed estimation over wireless sensor networks under attacks, IEEE Transactions on Aerospace and Electronic Systems, 54, 4, 1815-1831 (2018)
[23] Lynch, N. A., Distributed algorithms (1996), Morgan Kaufmann Publishers, Inc · Zbl 0877.68061
[24] Menezes, A. J.; Katz, J.; Van Oorschot, P. C.; Vanstone, S. A., (Handbook of applied cryptography. Handbook of applied cryptography, CRC press series on discrete mathematics and its applications (1996), CRC Press) · Zbl 0868.94001
[25] Mitra, A.; Sundaram, S., Distributed observers for LTI systems, IEEE Transactions on Automatic Control, 63, 11, 3689-3704 (2018) · Zbl 1423.93234
[26] Mitra, A.; Sundaram, S., Byzantine-resilient distributed observers for LTI systems, Automatica (2019) · Zbl 1536.93292
[27] Niederreiter, H., Random number generation and Quasi-Monte carlo methods (1992), Society for Industrial and Applied Mathematics · Zbl 0761.65002
[28] Ozay, M.; Esnaola, I.; Vural, F. T.Y.; Kulkarni, S. R.; Poor, H. V., Sparse attack construction and state estimation in the smart grid: centralized and distributed models, IEEE Journal on Selected Areas in Communications, 31, 7, 1306-1317 (2013)
[29] Pasqualetti, F.; Carli, R.; Bullo, F., Distributed estimation via iterative projections with application to power network monitoring, Automatica, 48, 747-758 (2012) · Zbl 1246.93108
[30] Pasqualetti, F.; Dorfler, F.; Bullo, F., Control-theoretic methods for cyberphysical security: geometric principles for optimal cross-layer resilient control systems, IEEE Control Systems, 35, 1, 110-127 (2015) · Zbl 1476.93096
[31] Shoukry, Y.; Nuzzo, P.; Puggelli, A.; Sangiovanni-Vincentelli, A. L.; Seshia, S. A.; Tabuada, P., Secure state estimation for cyber physical systems under sensor attacks: a satisfiability modulo theory approach, IEEE Transactions on Automatic Control, 62, 10, 4917-4932 (2017) · Zbl 1390.93532
[32] Shoukry, Y.; Tabuada, P., Event-triggered state observers for sparse sensor noise/attacks, IEEE Transactions on Automatic Control, 61, 8, 2079-2091 (2016) · Zbl 1359.93072
[33] Su, L.; Shahrampour, S., Finite-time guarantees for Byzantine-resilient distributed state estimation with noisy measurements, IEEE Transactions on Automatic Control, 65, 9, 3758-3771 (2020) · Zbl 1533.93781
[34] Su, L.; Vaidya, N., Byzantine multi-agent optimization (2015)
[35] Sundaram, S.; Gharesifard, B., Distributed optimization under adversarial nodes, IEEE Transactions on Automatic Control, 64, 3, 1063-1076 (2019) · Zbl 1482.90233
[36] Sundaram, S.; Hadjicostis, C. N., Distributed function calculation via linear iterative strategies in the presence of malicious agents, IEEE Transactions on Automatic Control, 56, 7, 1495-1508 (2011) · Zbl 1368.93140
[37] Tabuada, P., Event-triggered real-time scheduling of stabilizing control tasks, IEEE Transactions on Automatic Control, 52, 9, 1680-1685 (2007) · Zbl 1366.90104
[38] Vukovic, O.; Dan, G., Security of fully distributed power system state estimation: detection and mitigation of data integrity attacks, IEEE Journal on Selected Areas in Communications, 32, 7, 1500-1508 (2014)
[39] Wang, H.; Ruan, J.; Wang, G.; Zhou, B.; Liu, Y.; Fu, X., Deep learning-based interval state estimation of AC smart grids against sparse cyber attacks, IEEE Transactions on Industrial Informatics, 14, 11, 4766-4788 (2018)
[40] Xie, L.; Choi, D.-H.; Kar, S.; Vincent Poor, H., Fully distributed state estimation for wide-area monitoring systems, IEEE Transactions on Smard Grid, 3, 3, 1154-1169 (2012)
[41] Yin, X.; Li, Z.; Kolmanovsky, I. V., Distributed state estimation for linear systems with application to full-car active suspension systems, IEEE Transactions on Industrial Electronics, 68, 2, 1615-1625 (2021)
[42] Zhang, H., & Sundaram, S. (2012). Robustness of information diffusion algorithms to locally bounded adversaries, arXiv:1110.3843v2.
[43] Zhao, Y.; Goldsmith, A.; Poor, H. V., Minimum sparsity of unobservable power network attacks, IEEE Transactions on Automatic Control, 62, 7, 3354-3368 (2017) · Zbl 1370.90058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.